Skip to main content
Log in

Comparative Characteristics of Seismic and Deformation Effects for Three Great Subduction Megaearthquakes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

The comparative characteristics of seismic and deformational effects of three great subduction megaearthquakes in Sumatra in 2004 (Mw = 9.2); in Maule, Chile, in 2010 (Mw = 8.8); and in Tohoku, Japan, in 2011 (Mw = 9.0) are considered. In all cases the main rupture at the time of the earthquake was located in the subduction zone on the surface of the oceanic lithospheric plate plunging gently beneath a continent or an island arc. The process of destruction in each focus is characterized by a megathrust, with a gentle inclination angle of ~8–18º, according to the definitions of its focal mechanism, in almost full compliance with a gentle dipping of the oceanic lithospheric plate. The displacement occurred in a locked area of the subducting plate extended for several kilometers below the ocean bottom to a depth of 30–40 km. In all three cases, the maximum coseismic slip, obtained according to the data of geodetic measurements, occurred in the upper 25 km of the locked area, while its lower part radiated coherent short-period seisms. The trace of the rupture on the surface, marked by the aftershock area, ranged from 400–600 km in the case of Tohoku and Maule earthquakes up to ~1500 km during the Sumatra earthquake. The rupture in the Maule and Tohoku earthquakes was bilateral, with its approximately symmetric propagation from the epicenter, while in the Sumatra earthquake the rupture spread unilaterally relative to the epicenter from southeast to northwest. The propagation time of the rupture also varied. If in the first two cases it was 140–160 s, for the Sumatra earthquake it lasted 500–600 s. The largest tsunami wave, up to 40–60 m in height, was recorded during the Tohoku earthquake, extending for more than 200 km along the coast of Sanriku province. The rupture during the megaearthquakes under discussion is not confined in depth to the locked seismogenic area, marked by the area of the aftershock nearest in time and the zone of maximum coseismic slips determined by the geodetic GPS measurements. The rupture continues aseismically (postseismic slip) in the transition zone from brittle to brittle-plastic slip to depths of ~60–80 km. In addition, there is evidence that the displacements on the megathrust can continue slightly deeper to the region of the brittle–plastic slip. Such episodic events of slow slip (“silent” or “slow” earthquakes) and “seismic tremor” were recorded in southwestern Japan and southern Chile. These differences in seismic and deformation effects can serve as evidence of the change in frictional properties with depth along the surface of the megathrust. It should also be recognized that the strength barriers and asperities on the megathrust surface expressed in certain geological structures or yet unclear nature of segments of high frequency radiation can manifest themselves in the character of distribution of the accompanying seismicity during the great subduction earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Agurto, H., Rietbrock, A., Ryder, I., and Miller, M., Seismic-afterslip characterization of the 2010 M w = 8.8 Maule, Chile, earthquake based on moment tensor inversion, Geophys. Res. Lett., 2012, vol. 39, paper ID L20303. https://doi.org/10.1029/2012GL053434

  2. Ammon, C.J., Ji, C., Thio, H., Robinson, D., Ni, S., Hjorleifsdottir, V., Kanamori, H., Lay, T., Das, S., Helmberger, D., Ichinose, G., Polet, J., and Wald D., Rupture process of the 2004 Sumatra–Andaman earthquake, Science, 2005, vol. 308, pp. 1133–1139.

    Article  Google Scholar 

  3. Araki, E., Shinohara, M., Obana, K., Yamada, T., Kaneda, Y., Kanazawa, T., and Suyehiro, K., Aftershock distribution of the 26 December 2004 Sumatra–Andaman earthquake from ocean bottom seismographic observation, Earth Planets Space, 2006, vol. 58, pp. 113–119. https://doi.org/10.1186/BF03353367

    Article  Google Scholar 

  4. Aron, F., Allmendinger, R.W., Cembrano, J., González, G., and Yáñez G., Permanent fore-arc extension and seismic segmentation: insights from the 2010 Maule earthquake, Chile, J. Geophys. Res.: Solid Earth, 2013, vol. 118, pp. 724–739. https://doi.org/10.1029/2012JB009339

    Article  Google Scholar 

  5. Azuma, R., Hino, R., Ohta, Y., Ito, Y., Mochizuki, K., Uehira, K., Murai, Y., Sato, T., Takanami, T., Shinohara, M., and Kanazawa, T., Along-arc heterogeneity of the seismic structure around a large coseismic shallow slip area of the 2011 Tohoku-oki earthquake: 2-D V p structural estimation through an air gun-ocean bottom seismometer experiment in the Japan Trench subduction zone, J. Geophys. Res.: Solid Earth, 2018, vol. 123, pp. 5249–5264. https://doi.org/10.1029/2017JB015361

    Article  Google Scholar 

  6. Banerjee, P., Pollitz, F., Nagarajan, B., and Burgmann, R., Coseismic slip distribution of the 26 December 2004 Sumatra—Andaman and 28 March 2005 Nias earthquakes from GPS static offsets, Bull. Seismol. Soc. Am., 2007, vol. 97, no. 1, part A, pp. 86–102. https://doi.org/10.1785/0120050609

  7. Barrientos, S.E. and Ward, S.N., The 1960 Chile earthquake: Inversion for slip distribution from surface deformation, Geophys. J. Int., 1990, vol. 103, no. 3, pp. 589–598. https://doi.org/10.1111/j.1365-246X.1990.tb05673.x

    Article  Google Scholar 

  8. Ben-Menahem, A., The force system of the Chilean earthquake of 1960 May 22, Geophys. J. R. Astron. Soc., 1971, vol. 25, pp. 407–417.

    Article  Google Scholar 

  9. Beroza, G.C. and Ide, S., Slow earthquakes and nonvolcanic tremor, Annu. Rev. Earth Planet. Sci., 2011, vol. 39, pp. 271–296. https://doi.org/10.1146/annurev-earth-040809-152531

    Article  Google Scholar 

  10. Bilek, S.L. and Lay, T., Rigidity variations with depth along the interplate megathrust faults in subduction zones, Science, 1999, vol. 400, pp. 443–446.

    Google Scholar 

  11. Campos, J., Hatzfeld, D., Madariaga, R., Lopez, G., Kausel, E., Zollo, A., Iannacone, G., Fromm, R., Barrientos, S., and Lyon-Caen, H., A seismological study of the 1835 seismic gap in South-Central Chile, Phys. Earth Planet. Inter., 2002, vol. 132, pp. 177–195.

    Article  Google Scholar 

  12. Chlieh, M., Avouac J.-Ph., Hjorleifsdottir V., Song, T.-R.A., Ji, Ch., Sieh, K., Sladen, A., Hebert, H., Prawirodirdjo, L., Bock, Y., and Galetzka, J., Coseismic slip and afterslip of the great M w 9.15 Sumatra–Andaman earthquake of 2004, Bull. Seismol. Soc. Am., 2007, vol. 97, no. 1A, pp. 152–S173. https://doi.org/10.1785/0120050631

    Article  Google Scholar 

  13. Contreras-Reyes, E., Flueh, E.R., and Grevemeyer, I., Tectonic control on sediment accretion and subduction off south central Chile: Implication for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes, Tectonics, 2010, vol. 29, paper ID TC0618. https://doi.org/10.1029/2010TC002734

  14. Cubas, N., Avouac, J.P., Leroy, Y.M., and Pons, A., Low friction along the high slip patch of the 2011 M w 9.0 Tohoku-Oki earthquake required from the wedge structure and extensional splay faults, Geophys. Res. Lett., 2013, vol. 40, pp. 4231–4237. https://doi.org/10.1002/grl.50682

    Article  Google Scholar 

  15. Delouis, B., Nocquet, J., and Vallée, M., Slip distribution of the February 27, 2010 M w = 8.8 Maule earthquake, Central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data, Geophys. Res. Lett., 2010, vol. 37. https://doi.org/10.1029/2010GL043899

  16. Dewey, J.W., Choy, G., Presgrave, B., Sipkin, S., Tarr, A.C., Benz, H., Earle, P., and Wald, D., Seismicity associated with the Sumatra-Andaman Islands earthquake of 26 December 2004, Bull. Seismol. Soc. Am., 2007, vol. 96, no. 1A, pp. 25–42.

    Article  Google Scholar 

  17. Dziewonski, A.M., Chou, T.-A., and Woodhouse, J.H., Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 1981, vol. 86, pp. 2825–2852. https://doi.org/10.1029/JB086iB04p02825

    Article  Google Scholar 

  18. Ekstrom, G., Nettles, M., and Dziewonski, A.M., The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 2012, vol. 200–201, no. 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

  19. Engdahl, E.R., Villasenor, A., DeShon, H.R., and Thurber, C.H., Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 M w 9.0 Sumatra–Andaman and 2005 M w 8.6 Nias Island great earthquakes, Bull. Seismol. Soc. Am., 2007, vol. 97, no. 1A, pp. S43–S61. https://doi.org/10.1785/0120050614

    Article  Google Scholar 

  20. Farías, M., Comte, D., Roecker, S., Carrizo, D., and Pardo, M., Crustal extensional faulting triggered by the 2010 Chilean earthquake: the Pichilemu seismic sequence, Tectonics, 2011, vol. 30, paper ID TC6010. https://doi.org/10.1029/2011TC002888

  21. Fedotov, S.A., On the seismic cycle, possibility of quantitative division into seismic regions, and long-term seismic forecasts, in Seismicheskoe raionirovanie SSSR (Division of the USSR into Seismic Regions), Moscow: Nauka, 1968, pp. 121–150.

  22. Geospatial Information Authority of Japan. The 2011 off the Pacific coast of Tohoku Earthquake, Coseismic and postseismic slip distribution on the plate interface (preliminary result). 2011. http://www.gsi.go.jp/cais/topic 110315.2-index-e.html.

  23. Guilbert, J., Vergoz, J., Schissele, E., Roueff, A., and Cansi, Y., Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the M w = 9.0 Sumatra earthquake, Geophys. Res. Lett., 2005, vol. 32, p. L15310. https://doi.org/10.1029/2005GL022966

    Article  Google Scholar 

  24. Hao, J.L., Wang, W.M., and Yao, Z.X., Source process of the 2011 M w 9.0 Tohoku Japan earthquake, Sci. China: Earth Sci., 2011, vol. 54, pp. 1105–1109. https://doi.org/10.1007/s11430-011-4241-y

    Article  Google Scholar 

  25. Hayes, G.P., Bergman, E., Johnson, K.L., Benz, H.M., Brown, L., and Meltzer, A.S., Seismotectonic framework of the 2010 February 27 M w = 8.8 Maule, Chile earthquake sequence, Geophys. J. Int., 2013, vol. 195, pp. 1034–1051. https://doi.org/10.1093/gji/ggt238

    Article  Google Scholar 

  26. Holdahl, S.R. and Sauber, J., in Shallow Subduction Zone: Seismic, Mechanics and Seismic Potential, Dmowska, R. and Ekstrom, G., Eds., Basel: Birkhauser, 1994.

    Google Scholar 

  27. Hsu, Y.-J., Simons, M., Avouac, J.-P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., and Bock, Y., Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science, 2006, vol. 312, no. 5782, pp. 1921–1926.

    Article  Google Scholar 

  28. Ide, S., Variety and spatial heterogeneity of tectonic tremor worldwide, J. Geophys. Res., 2012, vol. 117, paper ID B03302. https://doi.org/10.1029/2011JB008840

  29. Idehara, K., Yabe, S., and Ide, S., Regional and global variations in the temporal clustering of tectonic tremor activity, Earth Planets Space, 2014, vol. 66. https://doi.org/10.1186/1880-5981-66-66

  30. Ishii, M., Shearer, P.M., Houston, H., and Vidale, J.E., Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array, Nature, 2005, vol. 435, no. 7044, pp. 933–936.

    Article  Google Scholar 

  31. Ito, A., Yamamoto, Y., Hino, R., Suetsugu, D., Sugioka, H., Nakano, M., Obana, K., Kazuo Nakahigashi, K., and Shinohara, M., Tomographic image of crust and upper mantle off the Boso Peninsula using data from an ocean-bottom seismograph array, Earth Planets Space, 2017, vol. 69, no. 118, pp. 1–10. https://doi.org/10.1186/s40623-017-0703-6

    Article  Google Scholar 

  32. Kagan, Y.Y. and Jackson, D.D., Seismic gap hypothesis: ten years after, J. Geophys. Res., 1991, vol. 96, pp. 21419–21431.

    Article  Google Scholar 

  33. Kanamori, H., The Alaska earthquake of 1964: radiation of long-period surface waves and source mechanism, J. Geophys. Res., 1970, vol. 75, pp. 5011–5027.

    Article  Google Scholar 

  34. Kanamori, H. and Cipar, J.J., Focal process of the great Chilean earthquake, May 22, 1960, Phys. Earth Planet. Inter., 1974, vol. 9, no. 2, pp. 128–136. https://doi.org/10.1016/0031-9201(74)90029-6

    Article  Google Scholar 

  35. Khazaradze, G., Wang, K., Klotz, J., Hu, Y., and He, J., Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology, Geophys. Res. Lett., 2002, vol. 29, no. 22, p. 2050. https://doi.org/10.1029/2002GL015986

    Article  Google Scholar 

  36. Kiser, E. and Ishii, M., The March 11, 2011 Tohoku-oki earthquake and cascading failure of the plate interface, Geophys. Res. Lett., 2012, vol. 39, paper ID L00G25. https://doi.org/10.1029/2012GL051170

  37. Koper, K.D., Hutko, A.R., Lay, T., and Sufri, O., Imaging short-period seismic radiation from the 27 February 2010 Chile (M w 8.8) earthquake by back-projection of P, PP, and PKIKP waves, J. Geophys. Res., 2012, vol. 117, paper ID B02308. https://doi.org/10.1029/2011JB008576

  38. Kruger, F. and Ohrnberger, M., Tracking the rupture of the M w = 9.3 Sumatra earthquake over 1150 km at teleseismic distance, Nature, 2005, vol. 435, pp. 937–939.

    Article  Google Scholar 

  39. Lange, D., Tilmann, F., Barrientos, S.E., Contreras-Reyes, E., Methe, P., Moreno, M., Heit, B., Agurto, H., Bernard, P., Vilotte, J.-P., and Beck, S., Aftershock seismicity of the 27 February 2010 M w 8.8 Maule earthquake rupture zone, Earth Planet. Sci. Lett., 2012, vol. 317–318, pp. 413–425.

    Article  Google Scholar 

  40. Lay, T., Kanamori, H., Ammon, Ch.J., Nettles, M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekstrom, G., Satake, K., and Sipkin, S., The great Sumatra–Andaman earthquake of 26 December 2004, Science, 2005, vol. 308, pp. 1127–1133.

    Article  Google Scholar 

  41. Lay, T., Ammon, C.J., Kanamori, H., Koper, K.D., Sufri, O., and Hutko, A.R., Teleseismic inversion for rupture process of the 27 February 2010 Chile (M w 8.8) earthquake, Geophys. Res. Lett., 2010, vol. 37, pp. 1–5.

    Article  Google Scholar 

  42. Lay, T., Ammon, C.J., Kanamori, H., Xue, L. and Kim, M.J., Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 2011, vol. 63, pp. 687–692.

    Article  Google Scholar 

  43. Lay, T. and Kanamori, K., Insights from the great 2011 Japan earthquake, Phys. Today, 2011, vol. 64, pp. 33–39.

    Article  Google Scholar 

  44. Lay, T., Kanamori, H., Ammon, Ch.J., Koper, K.D., Hutko, A.R., Ye, L., Yue, H., and Rushing, T. M., Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 2012, vol. 117, paper ID B04311.

  45. Lee, Sh.-J., Huang, B.-Sh., Ando, M., Chiu, H.-Ch., and Wang, J.-H., Evidence of large scale repeating slip during the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 2011, vol. 38, paper ID L19306. https://doi.org/10.1029/2011GL049580

  46. Lin, Y.-N.N., Sladen, A., Ortega-Culaciati, F., Simons, M., Avouac, J.-Ph., Fielding, E.J., Brooks, B.A., Bevis, M., Genrich, J., Rietbrock, A., Vigny, Ch., Smalley, R., and Socquet, A., Coseismic and postseismic slip associated with the 2010 Maule earthquake, Chile: Characterizing the Arauco peninsula barrier effect, J. Geophys. Res.: Solid Earth, 2013, vol. 118, pp. 3142–3159. https://doi.org/10.1002/jgrb.50207

    Article  Google Scholar 

  47. Lomax, A., Rapid estimation of rupture extent for large earthquakes: application to the 2004, M = 9 Sumatra–Andaman mega-thrust, Geophys. Res. Lett., 2005, vol. 32, no. 10, paper ID L10314.

  48. Lorito, S., Romano, F., Atzori, S., Tong, X., Avallone, A., McCloskey, J., Cocco, M., Boschi, E., and Piatanesi, A., Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake, Nat. Geosci., 2011, vol. 4, no. 3, pp. 173–177.

    Article  Google Scholar 

  49. Lukk, A.A., Deshcherevskii, A.V., Sidorin, A.Ya., and Sidorin, I.A., Variatsii geofizicheskikh polei kak proyavlenie determinirovannogo khaosa vo fraktal’noi srede (Variations in Geophysical Fields as the Manifestation of Deterministic Chaos in a Fractal Medium), Moscow: OIFZ RAN, 1996.

  50. Lukk, A.A. and Leonova, V.G., Focal mechanisms statistics in spatiotemporal vicinity of the 2011 Tohoku catastrophic earthquake, Japan, Izv., Phys. Solid Earth, 2020, vol. 66, pp. 169–188. https://doi.org/10.31857/S0002333720020052

    Article  Google Scholar 

  51. Lukk, A.A. and Leonova, V.G., Variations of kinematics of deformation in the vicinity of catastrophic Sumatran earthquake, Geofiz. Prots. Biosfera, 2018, vol. 17, no. 4, pp. 76–91. https://doi.org/10.21455/GPB2018.4-5

    Article  Google Scholar 

  52. Lyubushin, A.A., Cyclic properties of seismic noise and the problem of predictability of the strongest earthquakes in Japanese Islands, Izv., Atmos. Oceanic Phys., 2018, vol. 54, no. 10, pp. 1460–1469. https://doi.org/10.1134/S0001433818100067

    Article  Google Scholar 

  53. McCann, W.R., Nishenko, S.P., Sykes, L.R., and Krause, J., Seismic gaps and plate tectonics: seismic potential for major boundaries, Pure Appl. Geophys., 1979, vol. 117, pp. 1082–1147.

    Article  Google Scholar 

  54. Melnick, D., Bookhagen, B., Strecker, M.R., and Echtler, H.P., Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile, J. Geophys. Res., 2009, vol. 114, paper ID B01407. https://doi.org/10.1029/2008JB005788

  55. Melnick, D., Moreno, M., Motagh, M., Cisternas, M., and Wesson, R.L., Splay fault slip during the M w 8.8 2010 Maule, Chile, earthquake, Geology, 2012, vol. 40, no. 3, pp. 251–254. https://doi.org/10.1130/G32712.1

    Article  Google Scholar 

  56. Mogi, K., Earthquake Prediction (Tokyo: Academic Press, 1985; Moscow: Mir, 1988).

  57. Mogi, K., Two kinds of seismic gaps, Pure Appl. Geophys., 1979, vol. 117, no. 6, pp. 1170–1186.

    Article  Google Scholar 

  58. Moreno, M.S., Bolte, J., Klotz, J., and Melnick, D., Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake, Geophys. Res. Lett., 2009, vol. 36, p. L16310. https://doi.org/10.1029/2009GL039276

    Article  Google Scholar 

  59. Moreno, M., Rosenau, M., and Oncken, O., Maule earthquake slip correlates with pre-seismic locking of Aandean subduction zone, Nature, 2010, vol. 467, no. 7312, pp. 198–202. https://doi.org/10.1038/nature09349

    Article  Google Scholar 

  60. Moreno, M., Melnick, D., Rosenau, M., Bolte, J., Klotz, J., Echtler, H., Baez, J., Bataille, K., Chen, J., Bevis, M., Hase, H., and Oncken, O., Heterogeneous plate locking in the South-Central Chile subduction zone: building up the next great earthquake, Earth Planet. Sci. Lett., 2011, vol. 305, nos. 3–4, pp. 413–424.

    Article  Google Scholar 

  61. Natawidjaja, D.H., Sieh, K., Ward, S.N., Cheng, H., Edwards, R.L., Galetzka, J., and Suwargadi, B.W., Paleogeodetic records of seismic and aseismic subduction from Central Sumatra microatolls, Indonesia, J. Geophys. Res., 2004, vol. 109, p. B04306. https://doi.org/10.1029/2003JB002398

    Article  Google Scholar 

  62. Nersesov, I.L., Ponomarev, V.S., and Teitel’baum, Yu.M., Effect of seismic quiescence before large earthquakes, in Issledovaniya po fizike zemletryasenii (Research in Earthquake Physics), Moscow: Nauka, 1976, pp. 149–169.

  63. Nersesov, I.L. and Rulev, B.G., Dynamics of the development of long-term seismological precursors, Izv. Akad. Nauk SSSR. Fiz. Zemli, 1986, no. 1, pp. 39–51.

  64. Ni, S., Kanamori, H., and Helmberger, D., Energy radiation from the Sumatra earthquake, Nature, 2005, vol. 434, p. 582.

    Article  Google Scholar 

  65. Oleskevich, D.A., Hyndman, R.D., and Wang, K., The updip and downdip limit to great subduction earthquakes: Thermal and structural models of Cascadia, South Alaska, SW Japan and Chile, J. Geophys. Res., 1999, vol. 104, pp. 14965–14991.

    Article  Google Scholar 

  66. Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., and Imakiire, T., Coseismic and postseismic slip of the 2011 magnitude-nine Tohoku-Oki earthquake, Nature, 2011, vol. 475, pp. 373–376. https://doi.org/10.1038/nature10227

    Article  Google Scholar 

  67. Ozawa, S., Nishimura, T., Munekane, H., Suito, H., Kobayashi, T., Tobita, M., and Imakiire, T., Preceding, coseismic and postseismic slips of the 2011 Tohoku earthquake, Japan, J. Geophys. Res., 2012, vol. 117, paper ID B07404. https://doi.org/10.1029/2011JB009120

  68. Parkin, E.J., Horizontal Crustal Movements Determined from Surveys after the Alaskan Earthquake of 1964, the Prince William Sound, Alaska, Earthquake of 1964 and Aftershocks, Washington, D.C: U.S. Dept. of Comm. Coast and Geodetic Survey, 1969, vol. III.

    Google Scholar 

  69. Plafker, G., Tectonics of the March 27, 1964 Alaska Earthquake. U.S. Geol. Surv. Prof. Paper. 543–I, New York: U.S. Geol. Surv., 1969. https://pubs.usgs.gov/pp/0543i/.

    Google Scholar 

  70. Pollitz, F.F., Brooks, B., Tong, X., Bevis, M.G., Foster, J.H., Burgmann, R., Smalley, R.J., Vigny, C., Socquet, A., Ruegg, J.-C., Campos, J., Barrientos, S., Parra, H., Baez Soto, J.-C., Pritchard, M.E., and Simons, M., An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behavior, J. Geophys. Res., 2006, vol. 111, no. B8, paper ID B08405. https://doi.org/10.1029/2006JB004258

  71. Rebetskii, Yu.L., Development of the method of cataclastic analysis of shear fractures for tectonic stress estimation. Dokl., Earth Sci., 2003, vol. 388, no. 1, pp. 72–76.

    Google Scholar 

  72. Rebetskii, Yu.L. and Marinin, A.B., Stressed state of the Earth’s crust in the western region of the Sunda subduction zone before the Sumatra–Andaman earthquake on December 26, 2004, Dokl. Earth Sci., 2006, vol. 407, no. 2, pp. 321–325.

    Article  Google Scholar 

  73. Rebetsky, Yu.L. and Polets, A.Yu., The state of stresses of the lithosphere in Japan before the catastrophic Tohoku earthquake of 11 March 2011, Geodyn. Tectonophys., 2014, vol. 5, no. 2, pp. 469–506. https://doi.org/10.5800/GT-2014-5-2-0137

    Article  Google Scholar 

  74. Ruegg, J.C., Rudloff, A., Vigny, C., Madariaga, R., de Chabalier, J.B., Campos, J., Kausel, E., Barrientos, S., and Dimitrov, D., Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile, Phys. Earth Planet. Inter., 2009, vol. 175, nos. 1–2, p. 78. https://doi.org/10.1016/j.pepi.2008.02.015

    Article  Google Scholar 

  75. Ruff, L. and Kanamori, H., Seismicity and the subduction process, Phys. Earth Planet. Inter., 1980, vol. 23, pp. 240–252.

    Article  Google Scholar 

  76. Scalera, G., Geodynamics of the Wadati–Benioff zone earthquakes: The 2004 Sumatra earthquake and other great earthquakes, Geophys. Int., 2006, vol. 46, no. 1, pp. 19–50.

    Google Scholar 

  77. Scholz, C.H., Earthquakes and friction laws, Nature, 1998, vol. 391, pp. 37–42.

    Article  Google Scholar 

  78. Shao, G., Li, X., Ji, Ch., and Maeda, T., Focal mechanism and slip history of the 2011 M w = 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves, Earth Planets Space, 2011, vol. 63, pp. 559–564. https://doi.org/10.5047/eps.2011.06.028

    Article  Google Scholar 

  79. Shearer, P. and Bungmann, R., Lessons learned from the 2004 Sumatra–Andaman megathrust rupture, Annu. Rev. Earth Planet. Sci., 2010, vol. 38, pp. 103–131. https://doi.org/10.1146/annurev-earth-040809-152537

    Article  Google Scholar 

  80. Sibuet, J.C., Rangin, C., Le Pichon, X., Singh, S., Cattaneo, A., Graindorge, D., Klingelhoefer, F., Lin, J.-Y., Malod, J., and Maury, T., 26th December 2004 great Sumatra–Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra, Earth Planet Sci Lett., 2007, vol. 263, no. 1–2, pp. 88–103. https://doi.org/10.1016/j.epsl.2007.09.005.insu-00204272

    Article  Google Scholar 

  81. Simoes, M., Avouac, J.P., Cattin, R., and Henry, P., The Sumatra subduction zone: a case for a locked fault zone extending into the mantle, J. Geophys. Res., 2004, vol. 109, paper ID B10402. https://doi.org/10.1029/2003JB002958

  82. Simons, M., Minson, S.E., Sladen, A., Ortega, F., Jiang, J., Owen, S.E., Meng, L., Ampuero, J.-P., Wei, Sh., Chu, R., Helmberger, D.V., Kanamori, H., Hetland, E., Moore, A.W., and Webb, F.H., The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries, Science, 2011. https://doi.org/10.1126/science.1206731

  83. Subarya, C., Chlieh, M., Prawirodirdjo, L., Avouac, J.-Ph., Bock, Y., Sieh, K., Meltzner, A.J., Natawidjaja, D.H., and McCaffrey, R., Plate-boundary deformation associated with the Great Sumatra–Andaman earthquake, Nature, 2006, vol. 440, no. 7080, pp. 46–51.

    Article  Google Scholar 

  84. Tajima, F., Mori, J., and Kennett, B.L.N., A review of the 2011 Tohoku-Oki earthquake (M w 9.0): Large-scale rupture across heterogeneous plate coupling, Tectonophysics, 2013, vol. 586, pp. 15–34.

    Article  Google Scholar 

  85. Tong, X., Sandwell, D., Luttrell, K., Brooks, B., Bevis, M., Shimada, M., Foster, J., Smalley, R., Jr., Parra, H., Soto, J.C.B., Blanco, M., Kendrick, E., Genrich, J., and Caccamise, D.J., II, The 2010 Maule, Chile, earthquake: downdip rupture limit revealed by space geodesy, Geophys. Res. Lett., 2010, vol. 37. https://doi.org/10.1029/2010GL045805

  86. Trubitsyn, V.P., Model of the 2011 Japan earthquake (M = 9.0), Geofiz. Prots. Biosfera, 2011, vol. 10, no. 3, pp. 5–19.

    Google Scholar 

  87. Tsuru, T., Park, J., Takahashi, N., Kodaira, Sh., Kido, Y., Kaneda, Y., and Kono, Y., Tectonic features of Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data, J. Geophys. Res., 2000, vol. 105, no. B7, pp. 16403–16413. https://doi.org/10.1029/2000JB900132

    Article  Google Scholar 

  88. Tsuru, T., Park, J., Miura, S., Kodaira, S., Kido, Y., and Hayashi, T., Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling, J. Geophys. Res., 2002, vol. 107, no. B12, p. 2357. https://doi.org/10.1029/2001JB001664

    Article  Google Scholar 

  89. Vigny, C., Simons, W.J.F., Abu, S., Bamphenyu, R., Satirapod, Ch., Choosakul, N., Subarya, C., Socquet, A., Omar, K., Abidin, H.Z., and Ambrosius, B.A.C., Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in Southeast Asia, Nature, 2005, vol. 436, no. 7048, pp. 201–206. https://doi.org/10.1038/nature03937

    Article  Google Scholar 

  90. Vigny, C., Socquet, A., Peyrat, S., et al., The 2010 M w 8.8 Maule megathrust earthquake of Central Chile, monitored by GPS, Science, 2011, vol. 332, pp. 1417–1421. https://doi.org/10.1126/science.1204132

    Article  Google Scholar 

  91. Wang, L., Shum, C.K., Simons, F.J., Tapley, B., and Dai, Ch., Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry, Geophys. Res. Lett., 2012, vol. 39, paper ID L07301. https://doi.org/10.1029/2012GL051104

  92. Wang, K., Sun, T., Brown, L., Hino, R., Tomita, F., Kido, M., Iinuma, T., Kodaira, Sh., and Fujiwara, T., Learning from crustal deformation associated with the M9 2011Tohoku-oki earthquake, Geosphere, 2018, vol. 14, no. 2, pp. 552–571. https://doi.org/10.1130/GESO-1531.1

  93. Wells, D.L. and Coppersmith, K.J., New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 1994, vol. 84, pp. 974–1002.

    Google Scholar 

  94. Xu, Y., Koper, K.D., Sufri, O., Zhu, L., and Hutko, A.R., Rupture imaging of the M w = 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P‑waves, Geochem., Geophys., Geosyst., 2009, vol. 10, p. Q04006. https://doi.org/10.1029/2008GC002335

    Article  Google Scholar 

  95. Yamamoto, Y., Obana, K., Kodaira, S., Hino, R., and Shinohara, M., Structural heterogeneities around the megathrust zone of the 2011 Tohoku earthquake from tomographic inversion of onshore and offshore seismic observations, J. Geophys. Res.: Solid Earth, 2014, vol. 119, pp. 1165–1180. https://doi.org/10.1002/2013JB010582

    Article  Google Scholar 

  96. Yamanaka, Y. and Kikuchi, M., Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 2004, vol. 109, paper ID B07307. https://doi.org/10.1029/2003JB002683

  97. Yunga, S.L., Metody i rezul’taty izucheniya seismotektonicheskikh deformatsii (Methods and Results of the Study of Seismotectonic Deformations), Moscow: Nauka, 1990.

  98. Zhang, Y., Xu, L., and Chen, Y.-T., Rupture process of the 2011 Tohoku earthquake from the joint inversion of teleseismic and GPS data, Earthquake Sci., 2012, vol. 25, pp. 129–135. https://doi.org/10.1007/s11589-012-0839-1

    Article  Google Scholar 

  99. Zhao, D., Huang, Z., Umino, N., Hasegawa, A., and Kanamori, H., Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (M w 9.0), Geophys. Res. Lett., 2011, vol. 38, paper ID L17308.

Download references

Funding

This work was carried out as part of State Task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, no. 0144-2019-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lukk.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukk, A.A., Leonova, V.G. Comparative Characteristics of Seismic and Deformation Effects for Three Great Subduction Megaearthquakes. Izv. Atmos. Ocean. Phys. 56, 1273–1300 (2020). https://doi.org/10.1134/S0001433820100060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820100060

Keywords:

Navigation