Skip to main content
Log in

High-Performance Registration of Sea-Wave Spatial Spectra during the Operational Space Monitoring of Vast Water Areas

  • METHODS AND TOOLS FOR SPACE DATA PROCESSING AND INTERPRETATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper, we describe high-performance methods for recording sea-surface spectra from space images for solving problems of operational oceanography. Algorithms and research software that implement methods for the operational recovery of the characteristics of the sea surface from space images are developed. These algorithms are tested and their performance are estimated using experimental data. The research software is designed to operate with multicore processors. Based on numerical experiments, the software was found to perform within a 1% error spectra reconstruction of slopes and elevations of the sea surface using the high-performance methods that are developed. Computational experiments demonstrated a significant increase in the performance of registering the spectra of slopes and elevations of the sea surface from the spectra of space images due to the parallelization of computations: by 5 times using only the central processor of a standard desktop computer and by more than 12 times using a graphics processor with CUDA technology. Examples of the application of the developed algorithms for monitoring the vast waters of the Black Sea and the Pacific Ocean are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bondur, V.G., Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas, in Waste Water—Evaluation and Management (Rijeka: InTech, 2011), pp. 155–180. http://www.intechopen. com/articles/show/title/satellite-monitoring-and-mathematical-modelling-of-deep-runoff-turbulent-jets-incoastal-water-areas.

  2. Bondur, V.G., Dulov, V.A., Murynin, A.B., and Yurovsky, Yu.Yu., A study of sea-wave spectra in a wide wavelength range from satellite and in-situ data, Izv., Atmos. Oceanic Phys., 2016, vol. 52, pp. 888–903.

    Article  Google Scholar 

  3. Bondur, V.G., Complex satellite monitoring of coastal water areas, in Proc. 31st Int. Symp. on Remote Sensing of the Environment ISRSE-2005 (St. Petersburg, 2005).

  4. Bondur, V.G. and Zamshin, V.V., Comprehensive ground-space monitoring of anthropogenic impact on Russian Black Sea coastal water areas, in Proc. Sci.-Pract. Conf. “Research and Development - 2016”, Anisimov, K., et al., Eds., Cham: Springer, 2016, pp. 625–637. https://doi.org/10.1007/978-3-319-62870-7_66.

  5. Bondur, V.G. and Tsidilina, M., Features of formation of remote sensing and sea truth databases for the monitoring of anthropogenic impact on ecosystems of coastal water areas, in Proc. 31st Int. Symp. on Remote Sensing of the Environment ISRSE-2005 (St. Petersburg, 2005), pp. 192–195.

  6. Bondur, V.G. and Sharkov, E.A., Statistical characteristics of foam formations on a disturbed sea-surface, Okeanologiya, 1982, vol. 22, no. 3, pp. 372–379.

    Google Scholar 

  7. Bondur, V.G. and Sharkov, E.A., Statistical characteristics of linear elements of foam formations on the sea-surface as derived from optical sounding data, Issled. Zemli Kosmosa, 1986, no. 4, pp. 21–31.

  8. Bondur, V.G. and Murynin, A.B., Reconstruction of the spectra of surface waves from the spectra of their images taking into account the nonlinear modulation of the brightness field, Opt. Atmos. Okeana, 1991, vol. 4, no. 4, pp. 387–393.

    Google Scholar 

  9. Bondur, V.G. and Savin, A.I., Modelling of signals on input to remote sensing equipment of aerospace environment monitoring systems, Earth Obs. Rem. Sens., 1996, vol. 13, pp. 539–553.

    Google Scholar 

  10. Bondur, V.G., The methods of modeling the emission fields formed at the input of airspace remote sensing system, Issled. Zemli Kosmosa, 2000a, no. 5, pp. 16–27.

  11. Bondur, V.G., Phase-spectral method’s modeling of two-dimension stochastic brightness field formed at the airspace apparatus entrance, Issled. Zemli Kosmosa, 2000b, no. 5, pp. 28–44.

  12. Bondur, V.G. and Starchenkov, S.A., Methods and programs for the processing and classification of aerospace images, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2001, no. 3, pp. 118–143.

  13. Bondur, V.G., Arzhenenko, N.I., Linnik, V.N., and Titova, I.L., The simulation of multispectral air-space images of dynamic brightness fields, Issled. Zemli Kosmosa, 2003, no. 2, pp. 3–17.

  14. Bondur, V.G., Aerospace methods in modern oceanology, in Novye idei v okeanologii. T.1. Fizika, khimiya, biologiya (New Ideas in Oceanology, vol. 1, Physics. Chemistry. Biology), Moscow: Nauka, 2004.

  15. Bondur, V.G. and Zubkov, E.V., Identification of small-scale ocean upper layer optical inhomogeneities in multispectral space images with a high surface resolution. Part 1. Canals and channels drainage effects in the coastal zone, Issled. Zemli Kosmosa, 2005, no. 4, pp. 54–61.

  16. Bondur, V.G., Keeler, R.N., Starchenkov, S.A., and Rybakova, N.I., Monitoring of the pollution of the ocean coastal water areas using multispectral high-resolution space imagery, Issled. Zemli Kosmosa, 2006a, no. 6, pp. 42–49.

  17. Bondur, V.G., Zhurbas, V.M., and Grebenyuk, Yu.V., Mathematical modeling of turbulent jets of deep-water sewage discharge into coastal basins, Oceanology, 2006, vol. 46, no. 6, 757–771.

    Article  Google Scholar 

  18. Bondur, V.G., Filatov, N.N., Grebenyuk, Yu.V., Dolotov, Yu.S., Zdorovennov, R.E., Petrov, M.P., and Tsidilina, M.N., Studies of hydrophysical processes during monitoring of the anthropogenic impact on coastal basins using the example of Mamala Bay of Oahu Island in Hawaii, Oceanology, 2007, vol. 47, no. 6, pp. 769–787.

    Article  Google Scholar 

  19. Bondur, V.G. and Zamshina, A.Sh., Investigation of high-frequency internal waves at the shelf boundary by the spectra of space optical images, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2008, no. 1, pp. 85–96.

  20. Bondur, V.G., Grebenyuk, Yu.V., and Morozov, E.G., Satellite recording and modeling of short internal waves in coastal zones of the ocean, Dokl., Earth Sci., 2008a, vol. 418, no. 1, pp. 191–195.

    Article  Google Scholar 

  21. Bondur, V.G., Grebenjuk, Yu.V., and Sabinin, K.D., Variability of internal tides in the coastal water area of Oahu Island (Hawaii), Oceanology, 2008b, vol. 48, no. 5, pp. 611–621.

    Article  Google Scholar 

  22. Bondur, V.G., Grebenyuk, Yu.V., Ezhova, E.V., Kazakov, V.I., Sergeev, D.A., Soustova, I.A., and Troitskaya, Yu.I., Surface manifestations of internal waves investigated by a subsurface buoyant jet: 1. The mechanism of internal-wave generation, Izv., Atmos. Oceanic Phys., 2009, vol. 45, no. 6, pp. 779–790.

    Article  Google Scholar 

  23. Bondur, V.G., Grebenyuk, Yu.V., and Sabynin, K.D., The spectral characteristics and kinematics of short-period internal waves on the Hawaiian shelf, Izv., Atmos. Oceanic Phys., 2009, vol. 45, no. 5, pp. 598–607.

    Article  Google Scholar 

  24. Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Oceanic Phys., 2011, vol. 47, no. 9, pp. 1007–1018.

    Article  Google Scholar 

  25. Bondur, V.G., Vorobjev, V.E., Grebenjuk, Y.V., Sabinin, K.D., and Serebryany, A.N., Study of fields of currents and pollution of the coastal waters on the Gelendzhik shelf of the Black Sea with space data, Izv., Atmos. Oceanic Phys., 2013, vol. 49, no. 9, pp. 886–896.

    Article  Google Scholar 

  26. Bondur, V.G., Sabinin, K.D., and Grebenyuk, Yu.V., Anomalous variation of the ocean’s inertial oscillations at the Hawaii shelf, Dokl., Earth Sci., 2013, vol. 450, pp. 526–530.

    Article  Google Scholar 

  27. Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 840–852.

    Article  Google Scholar 

  28. Bondur, V.G. and Murynin, A.B., Methods for retrieval of sea wave spectra from aerospace image spectra, Izv. Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 877–887.https://doi.org/10.1134/S0001433816090085

    Article  Google Scholar 

  29. Bondur, V.G., Dulov, V.A., Murynin, A.B., and Ignatiev, V.Yu., Retrieving sea-wave spectra using satellite-imagery spectra in a wide range of frequencies, Izv., Atmos. Oceanic Phys., 2016, vol. 52, pp. 637–648.

    Article  Google Scholar 

  30. Bondur, V.G., Sabinin, K.D., and Grebenyuk, Yu.V., Characteristics of inertial oscillations according to the experimental measurements of currents on the Russian shelf of the Black Sea, Izv., Atmos. Oceanic Phys., 2017, vol. 53, no. 1, pp. 120–126.

    Article  Google Scholar 

  31. Bondur, V.G., Ivanov, V.A., and Fomin, V.V., Peculiarities of polluted water spreading from a submarine source in stratified coastal environment, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 4, pp. 386–393.

    Article  Google Scholar 

  32. Bondur, V.G., Vorobyev, V.E., Zamshin, V.V., Serebryany, A.N., Latushkin, A.A., Li, M.E., Martynov, O.V., Hurchak, A.P., and Grinchenko, D.V., Monitoring anthropogenic impact on some coastal water areas of the Black Sea using multispectral satellite imagery, Izv., Atmos. Oceanic Phys., 2018, vol. 54, no. 9, pp. 1008–1022.

    Article  Google Scholar 

  33. CUDA parallel computing. Available at: https://developer. nvidia.com/cuda-zone (accessed 19 September 2019).

  34. ENVI—Environment for Visualizing Images. http://www. harrisgeospatial.com/docs/using_envi_Home.html (accessed 19 September 2019).

  35. ERDAS Imaging 2018 Release guide. https://www.hexagongeospatial.com/technical-documents/release-guides-2018/erdas-imagine-2018-releaseguide (accessed 19 September 2019).

  36. Geospatial Data and Abstraction Library. www.gdal.org (accessed 19 September 2019).

  37. Intel Integrated Performance Primitives. Available at: https:// software.intel.com/en-us/intel-ipp (accessed 19 September 2019).

  38. Ivonin, D.V. and Ivanov, A.Y., On classification of sea surface oil films using TerraSAR-x satellite polarization data, Oceanology, 2017, vol. 57, no. 5, pp. 738–750.

    Article  Google Scholar 

  39. Keeler, R., Bondur, V., and Vithanage, D., Sea truth measurements for remote sensing of littoral water, Sea Technol., April 2004, pp. 53–58.

  40. Microsoft PowerPoint. Available at: https://products.office. com/ru-ru/powerpoint (accessed 19 September 2019).

  41. Murynin, A.B., Retrieving spatial spectra of the sea surface from optical images in a nonlinear brightness field model, Issled. Zemli Kosmosa, 1990, no. 6, pp. 60–70.

  42. Murynin, A.B., Parameterization of filters retrieving the spatial spectra of sea surface slopes on the basis of optical imagery, Issled. Zemli Kosmosa, 1991, no. 5, pp. 31–38.

  43. Open Source Computer Vision Library. https://opencv.org (accessed 19 September 2019).

  44. Phillips, O.M., The Dynamics of the Upper Ocean, Cambridge: Cambridge Univ. Press, 1980; Moscow: Mir, 1980.

  45. Toba, J., Local balance in the air–sea boundary process, Oceanogr. Soc. Jpn., 1973, vol. 29, pp. 209–225.

    Article  Google Scholar 

  46. The OpenMP API specification for parallel programming. www.openmp.org (accessed 19 September 2019).

  47. Visual Basic. https://docs.microsoft.com/ruru/dotnet/ v-isual-basic/ (accessed 19 September 2019).

  48. Voevodin, V.V. and Voevodin, Vl.V., Parallel’nye vychisleniya (Parallel computations), St. Petersburg: BKHV, 2002.

    Google Scholar 

  49. Yurovskaya, M.V., Dulov, V.A., Chapron, B., and Kudryavtsev, V.N., Directional short wind wave spectra derived from the sea surface photography, J. Geophys. Res., 2013, vol. 118, no. 9, pp. 4380–4394. https://doi.org/10.1002/jgrc.20296

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of Russia, project no. RFMEFI60719X0306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Vorobyev.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyev, V.E., Murynin, A.B. & Khachatryan, K.S. High-Performance Registration of Sea-Wave Spatial Spectra during the Operational Space Monitoring of Vast Water Areas. Izv. Atmos. Ocean. Phys. 56, 1159–1167 (2020). https://doi.org/10.1134/S0001433820090248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820090248

Keywords:

Navigation