Skip to main content
Log in

Forecasting Crop Yield Based on the Satellite Monitoring of Carbon Dynamics in Terrestrial Ecosystems

  • USE OF SPACE INFORMATION ABOUT THE EARTH ENVIRONMENTAL STUDIES BASED ON SPACE DATA
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A low-parametric model of crop biomass dynamics using the data of satellite remote sensing of the underlying surface vegetation index and routine meteorological observations is proposed. Modeling is being done with this data filtered by yield-correlation image masking technique. The simulation is based on the Monteith equation for carbon dynamics in terrestrial ecosystems. Meteorological parameters that have an effect on the photosynthesis intensity but are rarely measured directly are calculated on the basis of analytical parameterizations obtained from reanalysis data. The validity of the model is demonstrated by the example of satellite monitoring of the spring wheat yield in the regions of the Republic of Belarus (RB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Atzberger, C., Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs, Remote Sens., 2013, vol. 5, no. 2, pp. 949–981. https://doi.org/10.3390/rs5020949

    Article  Google Scholar 

  2. Baret, F. and Buis, S., Estimating canopy characteristics from remote sensing observations: review of methods and associated problems in Advances in Land Remote Sensing, Liang, S., Ed., Dordrecht: Springer, 2008. https://doi.org/10.1007/978-1-4020-6450-0_7

    Book  Google Scholar 

  3. Becker-Reshef, I., Vermote, E., Lindeman, M., and Justice, C., A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data, Remote Sens. Environ., 2010, vol. 114, no. 6, pp. 1312–1323. https://doi.org/10.1016/j.rse.2010.01.010

    Article  Google Scholar 

  4. Bryskin, V.M. and Evtyushkin, A.V., Using the EPIC bioproductivity model and MODIS satellite imagery to predict the yield of grain crops, in Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa: fizicheskie osnovy, metody i tekhnologii monitoringa okruzhayushchei sredy, potentsial’no opasnykh yavlenii i ob”ektov: sb. nauch. st., (Modern Problems of Remote Sensing of the Earth from Space: Physical Foundations, Methods, and Technologies for Monitoring the Environment, Potentially Dangerous Phenomena and Objects) Moscow: GRANP Poligraf, 2007, vol. 2, no. 4, pp. 189–196.

  5. Delecolle, R., Maas, S.J., Guerif, M., and Baret, F., Remote sensing and crop production models: present trends, ISPRS J. Photogramm., 1992, vol. 47, nos. 2–3, pp. 145–161. https://doi.org/10.1016/0924-2716(92)90030-D

    Article  Google Scholar 

  6. Dmitrenko, V.P., Pogoda, klimat i urozhai polevykh kul’tur (Weather, Climate and Crop Harvest), Kiev: Nika-tsentr, 2010.

  7. Duchemin, B., Maisongrande, P., Boulet, G., and Benhadj, I., A simple algorithm for yield estimates: evaluation for semi-arid irrigated winter wheat monitored with green leaf area index, Environ. Modell. Softw., 2008, vol. 23, no. 7, pp. 876–892. https://doi.org/10.1016/j.envsoft.2007.10.003

    Article  Google Scholar 

  8. Ferencz, Cs., Bognar, P., Lichtenberger, J., Hamar, D., Tarcsai, Gy., Timar, G., Molnar, G., Pasztor, Sz., Steinbach, P., Szekely, B., Ferencz, O.E., and Ferencz-Arkos, I., Crop yield estimation by satellite remote sensing, Int. J. Remote Sens., 2004, vol. 25, no. 20, pp. 4113–4149. https://doi.org/10.1080/01431160410001698870

    Article  Google Scholar 

  9. Ganguly, S., Nemani, R.R., Baret, F., Bi, J., Weiss, M., Zhang, G., Milesi, C., Hashimoto, H., Samanta, A., Verger, A., Singh, K., and Myneni, R.B., Green leaf area and fraction of photosynthetically active radiation absorbed by vegetation, in Biophysical Applications of Satellite Remote Sensing, Hanes, J.M., Ed., Berlin: Springer, 2014. https://doi.org/10.1007/978-3-642-25047-7_2

    Book  Google Scholar 

  10. Hansen, M.C., Defries, R.S., Townshend, J.R.G., and Sohlberg, R., Global land cover classification at 1 km spatial resolution using a classification tree approach, Int. J. Remote Sens., 2000, vol. 21, no. 7, pp. 1331–1364. https://doi.org/10.1080/014311600210209

    Article  Google Scholar 

  11. Huete, A., Miura, T., Yoshioka, H., Ratana, P., and Broich, M., Indices of vegetation activity, in Biophysical Applications of Satellite Remote Sensing, Hanes, J.M., Ed., Berlin: Springer- Heidelberg, 2014. https://doi.org/10.1007/978-3-642-25047-7_1

    Book  Google Scholar 

  12. Jin, X., Kumar, L., Li, Z., Xu, X., Yang, G., and Wang, J., Estimation of winter wheat biomass and yield by combining the AquaCrop model and field hyperspectral data, Remote Sens., 2016, vol. 8, no. 12, pp. 972-1–972-15. https://doi.org/10.3390/rs8120972

  13. Kasampalis, D.A., Alexandridis, T.K., Deva, C., Challinor, A., Moshou, D., and Zalidis, G., Contribution of remote sensing on crop models: a review, J. Imaging, 2018, vol. 4, no. 4, pp. 52-1–52-19.https://doi.org/10.3390/jimaging4040052

  14. Kastens, J.H., Kastens, T.L., Kastens, D.L.A., Price, K.P., Martinko, E.A., and Lee, R.-Y., Image masking for crop yield forecasting using AVHRR NDVI time series imagery, Remote Sens. Environ., 2005, vol. 99, no. 3, pp. 341–356. https://doi.org/10.1016/j.rse.2005.09.010

    Article  Google Scholar 

  15. Kleshchenko, A.D. and Naidina, T.A., Using remote sensing data to model plant physiological processes in dynamic crop yield forecast models, Sovr. Probl. Dist. Zond. Zemli Kosm., 2011, vol. 8, no. 1, pp. 170–177.

    Google Scholar 

  16. Kleshchenko, A.D., Lebedeva, V.M., Naidina, T.A., and Savitskaya, O.V., The use of MODIS satellite information in operational agrometeorology, Sovr. Probl. Dist. Zond. Zemli Kosm., 2015, vol. 12, no. 2, pp. 143–154.

    Google Scholar 

  17. Kouadio, L., Newlands, N.K., Davidson, A., Zhang, Y., and Chipanshi, A., Assessing the performance of MODI-S NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale, Remote Sens., 2014, vol. 6, no. 10, pp. 10193–10214. https://doi.org/10.3390/rs61010193

    Article  Google Scholar 

  18. Kussul’, N.N., Kravchenko, A.N., Skakun, S.V., Adamenko, T.I., Shelestov, A.Yu., Kolotii, A.V., and Gripich, Yu.A., Regression models for crop yield estimation according to MODIS, Sovr. Probl. Dist. Zond. Zemli Kosm., 2012, vol. 9, no. 1, pp. 95–107.

    Google Scholar 

  19. Liu, J., Pattey, E., Miller, J.R., McNairn, H., Smith, A., and Hu, B., Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model, Remote Sens. Environ., 2010, vol. 114, no. 6, pp. 1167–1177. https://doi.org/10.1016/j.rse.2010.01.004

    Article  Google Scholar 

  20. Monteith, J.L., Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 1972, vol. 9, no. 3, pp. 747–766. https://doi.org/10.2307/2401901

    Article  Google Scholar 

  21. Myneni, R.B. and Williams, D.L., On the relationship between FAPAR and NDVI, Remote Sens. Environ., 1994, vol. 49, no. 3, pp. 200–211. https://doi.org/10.1016/0034-4257(94)90016-7

    Article  Google Scholar 

  22. Plotnikov, D.E., Bartalev, S.A., Zharko, V.O., Mikhailov, V.V., and Prosyannikova, O.I., Experimental assessment of the recognition of crops from seasonal satellite measurements of spectral brightness, Sovr. Probl. Dist. Zond. Zemli Kosm., 2011, vol. 8, no. 1, pp. 199–208.

    Google Scholar 

  23. Poluektov, R.A., Smolyar, E.I., Terleev, V.V., and Topazh, A.G., Modeli produktsionnogo protsessa sel’skokhozyaistvennykh kul’tur (Crop Production Process Models), St. Petersburg: Izd-vo Sankt-Peterburgskogo universiteta, 2006.

  24. Rembold, F., Atzberger, C., Savin, I., and Rojas, O., Using low resolution satellite imagery for yield prediction and yield anomaly detection, Remote Sens., 2013, vol. 5, no. 4, pp. 1704–1733. https://doi.org/10.3390/rs5041704

    Article  Google Scholar 

  25. Savin, I.Yu., Bartalev, S.A., Lupyan, E.A., Tolpin, V.A., and Khvostikov, S.A., Predicting crop yields based on satellite data: opportunities and prospects, Sovr. Probl. Dist. Zond. Zemli Kosm., 2010, vol. 7, no. 3, pp. 275–285.

    Google Scholar 

  26. Sen, Z., Solar Energy Fundamentals and Modeling Techniques Atmosphere, Environment, Climate Change and Renewable Energy, London: Springer, 2008.

    Google Scholar 

  27. Sirotenko, O.D., Matematicheskoe modelirovanie vodnoteplovogo rezhima i produktivnosti agroekosistem (Mathematical Modeling of Water-Thermal Regime and Productivity of Agroecosystems), Leningrad: Gidrometeoizdat, 1981.

  28. Sladkikh, L.A., Zakhvatov, M.G., Saprykin, E.I., and Sakharova, E.Yu., Technology of monitoring the state of crops according to remote sensing data in the south of western Siberia, Geomatika, 2016, no. 2, pp. 39–48.

  29. Strashnaya, A.I., Bartalev, S.A., Maksimenkova, T.A., Chub, O.V., Tolpin, V.A., Plotnikov, D.E., and Bogomolova, N.A., Agrometeorological assessment of the state of winter crops in the period of vegetation termination using ground and satellite data on the example of the Volga Federal District, Tr. Gidrometeorol. Nauch.-Issled. Tsentra Ross. Fed., 2014, no. 351, pp. 85–107.

  30. Supit, I. and Van Kappel, R.R., A simple method to estimate global radiation, Solar Energy, 1998, vol. 63, no. 3, pp. 147–160. https://doi.org/10.1016/S0038-092X(98)00068-1

    Article  Google Scholar 

  31. Terekhov, A.G., Vitkovskaya, I.S., Batyrbaeva, M.Zh., and Spivak, L.F., Principles of agrolandscape zoning of arable lands of Northern Kazakhstan according to LANDSAT and MODIS data, Sovr. Probl. Dist. Zond. Zemli Kosm., 2010, vol. 7, no. 3, pp. 292–304.

    Google Scholar 

  32. Xiao, X., Jin, C., and Dong, J., Gross primary production of terrestrial vegetation, in Biophysical Applications of Satellite Remote Sensing, Hanes, J.M., Ed., Berlin: Springer, 2014.

    Google Scholar 

  33. Zhang, P., Anderson, B., Tan, B., Huang, D., and Myneni, R., Potential monitoring of crop production using a satellite-based climate-variability impact index, Agr. Forest Meteorol., 2005, vol. 132, nos. 3–4, pp. 344–358. https://doi.org/10.1016/j.agrformet.2005.09.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lysenko.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, S.A. Forecasting Crop Yield Based on the Satellite Monitoring of Carbon Dynamics in Terrestrial Ecosystems. Izv. Atmos. Ocean. Phys. 56, 1127–1135 (2020). https://doi.org/10.1134/S0001433820090170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820090170

Keawords:

Navigation