Skip to main content

Advertisement

Log in

Climate-Forced Changes of Bioproductivity of Terrestrial Ecosystems in Belarus

  • USE OF SPACE INFORMATION ABOUT THE EARTH SPACE MONITORING OF CLIMATE-RELATED CHANGES
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The spatial and temporal particularities of changes in the normalized difference vegetation index (NDVI) over the territory of Belarus in the current century and their relationship with climate changes has been investigated. An increase in the NDVI is observed on about 84% of the area of ​​Belarus. Statistically significant growth of the NDVI has been recorded at nearly 35% of the studied area (Student’s t-test at 95% confidence interval), mainly forests and undeveloped areas. Croplands vegetation index is mainly decreasing. The main factor of croplands bioproductivity interannual variability is the precipitation amount in the vegetation period. This factor determines more than 60% of the cropland NDVI dispersion. The long-term changes in the NDVI are explained by a combination of two factors: the photosynthesis-intensifying action of carbon dioxide and the warming of the air, which suppresses vegetation alongside a practically constant precipitation amount. If the observed climatic trends persist, the cropland bioproductivity in many regions of Belarus by the middle of this century may decrease by more than 20% compared to 2000. The impact of climate change on the bioproductivity of the undeveloped lands of Belarus is insignificant against the background of its growth under the conditions of the increasing content of carbon dioxide in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alekseev, G.V., et al., Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Second Assessment Report of Roshydromet on climate change and its consequences on the territory of the Russian Federation), Moscow: Roshydromet, 2014.

  2. Bjorkman, A.D., et al., Plant functional trait change across a warming tundra biome, Nature, 2018, vol. 562, no. 7725, pp. 57–62. https://doi.org/10.1038/s41586-018-0563-7

    Article  Google Scholar 

  3. Buermann, W., Forkel, M., O’Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V., Jain, A.K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D., Nabel, J.E.M.S., Tian, H., Wiltshire, A.J., Zhu, D., Smith, W.K., and Richardson, A.D., Widespread seasonal compensation effects of spring warming on northern plant productivity, Nature, 2018, vol. 562, no. 7725, pp. 110–114. https://doi.org/10.1038/s41586-018-0555-7

    Article  Google Scholar 

  4. Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tommervik, H., Bala, G., Zhu, Z., Nemani, R.R., and Myneni, R.B., China and India lead in greening of the world through land-use management, Nat. Sustainability, 2019, vol. 2, pp. 122–129. https://doi.org/10.1038/s41893-019-0220-7

    Article  Google Scholar 

  5. Duveiller, G., Hooker, J., and Cescatti, A., The mark of vegetation change on Earth’s surface energy balance, Nat. Commun., 2018, vol. 9, no. 679, pp. 679-1–679-12.

  6. Forzieri, G., Alkama, R., Miralles, D.G., and Cescatti, A., Satellites reveal contrasting responses of regional climate to the widespread greening of Earth, Science, 2017, vol. 356, no. 6343, pp. 1180–1184. https://doi.org/10.1126/science.aal1727

    Article  Google Scholar 

  7. Ganguly, S., Nemani, R.R., Baret, F., Bi, J., Weiss, M., Zhang, G., Milesi, C., Hashimoto, H., Samanta, A., Verger, A., Singh, K., and Myneni, R.B., Green leaf area and fraction of photosynthetically active radiation absorbed by vegetation, in Biophysical Applications of Satellite Remote Sensing, Hanes, J.M., Ed., Berlin: Springer, 2014. https://doi.org/10.1007/978-3-642-25047-7_2

    Book  Google Scholar 

  8. Goovaerts, P., Geostatistics for Natural Resources Evaluation, New York: Oxford University Press, 1997.

    Google Scholar 

  9. Green, J.K., Konings, A.G., Alemohammad, S.H., Berry, J., Entekhabi, D., Kolassa, J., Lee, J.-E., and Gentine, P., Regionally strong feedbacks between the atmosphere and terrestrial biosphere, Nat. Geosci., 2017, vol. 10, pp. 410–414. https://doi.org/10.1038/ngeo2957

    Article  Google Scholar 

  10. Kanevskiy, M.F., Dem’yanov, V.V., Savel’eva, E.A., Chernov, S.Yu., and Timonin, V.A., Elementary introduction to geostatistics, Probl. Okr. Sredy Prir. Resur., 1999, no. 11.

  11. Keeling, R.F., Graven, H.D., Welp, L.R., Resplandy, L., Bi, J., Piper, S.C., Sun, Y., Bollenbacher, A., and Meijer, H.A.J., Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 39, pp. 10361–10366. https://doi.org/10.1073/pnas.1619240114

    Article  Google Scholar 

  12. Kozoderov, V.V. and Dmitriev, E.V., Remote sensing of soils and vegetation: quantitative parameters retrieval using pattern-recognition techniques and forest stand structure assessment, Int. J. Remote Sens., 2011, vol. 32, pp. 5699–5717. https://doi.org/10.1080/01431161.2010.507262

    Article  Google Scholar 

  13. Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., Kazantsev, O.Yu., Persev, I.V., and Scherbakov, M.V., Hyperspectral aerospace research data processing, Issled. Zemli Kosmosa, 2012, no. 5, pp. 3–11.

  14. Kozoderov, V.V. and Dmitriev, E.V., Testing different classification methods in airborne hyperspectral imagery processing, Opt. Express, 2016, vol. 24, no. 10, pp. A956–A965. https://doi.org/10.1364/OE.24.00A956

    Article  Google Scholar 

  15. Kozoderov, V.V. and Dmitriev, E.V., Recognition and estimation models of the state of forest vegetation based on the remote sensing hyperspectral data, Issled. Zemli Kosmosa, 2017, no. 6, pp. 75–88.

  16. Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., Canadell, J.G., McCabe, M.F., Evans, J.P., and Wang, G., Recent reversal in loss of global terrestrial biomass, Nat. Clim. Change, 2015, vol. 5, no. 5, pp. 470–474. https://doi.org/10.1038/nclimate2581

    Article  Google Scholar 

  17. Liu, Q., Piao, S., Janssens, I.A., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni, R.B., Penuelas, J., and Wang, T., Extension of the growing season increases vegetation exposure to frost, Nat. Commun., 2018, vol. 9, no. 1, pp. 426-1–426-8. https://doi.org/10.1038/s41467-017-02690-y

  18. Loginov, V.F., Izmeneniya klimata v Belarusi i ikh posledstviya dlya klyuchevykh sektorov ekonomiki (sel’skoe, lesnoe i vodnoe hozyaistvo) (Climate Change in Belarus and its Consequences for the Key Sectors of Economy (Agriculture, Forestry and Water Industry)), Minsk: BelNITs Ekologiya, 2010.

  19. Myneni, R.B. and Williams, D.L., On the relationship between FAPAR and NDVI, Remote Sens. Environ., 1994, vol. 49, no. 3, pp. 200–211. https://doi.org/10.1016/0034-4257(94)90016-7

    Article  Google Scholar 

  20. Pavlova, V.N. and Sirotenko, O.D., Observed climate change and agriculture productivity dynamics, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2012, vol. 565, pp. 132–150.

    Google Scholar 

  21. Running, S., Nemani, R., Heinsch, F., Zhao, M., Reeves, M., and Hashimoto, H., A continuous satellite-derived measure of global terrestrial primary production, BioScience, 2004, vol. 54, no. 6, pp. 547–560. https://doi.org/10.1641/0006-3568(2004)054[0547AC-SMOG]2.0.CO;2

  22. Sirotenko, O.D., Kleschenko, A.D., Pavlova, V.N., Abashina, E.V., and Semendyaev, A.K., Climate change monitoring and estimation of consequences, Agrofizika, 2011, no. 3, pp. 31–39.

  23. Swann, A.L.S., Hoffman, F.M., Koven, C.D., and Randerson, J.T., Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 36, pp. 10019–10024. https://doi.org/10.1073/pnas.1604581113

    Article  Google Scholar 

  24. Xiao, X., Jin, C., and Dong, J., Gross primary production of terrestrial vegetation in Biophysical Applications of Satellite Remote Sensing, Hanes, J.M., Ed., Berlin: Springer, 2014, p. 127–148. https://doi.org/10.1007/978-3-642-25047-7_2

    Book  Google Scholar 

  25. Xu, L., Myneni, R.B., Chapin, F.S., Callaghan, T.V., Pinzon, J.E., Tucker, C.J., Zhu, Z., Bi, J., Ciais, P., Tommervik, H., Euskirchen, E.S., Forbes, B.C., Piao, S.L., Anderson, B.T., Ganguly, S., Nemani, R.R., Goetz, S.J., Beck, P.S.A., Bunn, A.G., Cao, C., and Stroeve, J.C., Temperature and vegetation seasonality diminishment over northern lands, Nat. Clim. Change, 2013, vol. 3, no. 6, pp. 581–586. https://doi.org/10.1038/nclimate1836

    Article  Google Scholar 

  26. Zeng, Z., Piao, S., Li, L.Z.X., Zhou, L., Ciais, P., Wang, T., Li, Y., Lian, X., Wood, E.F., Friedlingstein, P., Mao, J., Estes, L.D., Myneni, R.B., Peng, S., Shi, X., Seneviratne, S.I., and Wang, Y., Climate mitigation from vegetation biophysical feedbacks during the past three decades, Nat. Clim. Change, 2017, vol. 7, pp. 432–436. https://doi.org/10.1038/nclimate3299

    Article  Google Scholar 

  27. Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Penuelas, J., Poulter, B., Pugh, T.A.M., Stocker, B.D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Sonke, Z., and Zeng, N., Greening of the Earth and its drivers, Nat. Clim. Change, 2016, vol. 6, no. 8, pp. 791–795. https://doi.org/10.1038/nclimate3004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lysenko.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, S.A. Climate-Forced Changes of Bioproductivity of Terrestrial Ecosystems in Belarus. Izv. Atmos. Ocean. Phys. 56, 1080–1089 (2020). https://doi.org/10.1134/S0001433820090169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820090169

Keawords:

Navigation