Skip to main content
Log in

The Use of Mini-Drifters in Coastal Current Measurements Conducted Concurrently with Satellite Imaging

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of field measurements of coastal currents using Lagrangian mini-drifters are presented. The drifter experiments were conducted concurrently with satellite imaging using Sentinel-2 MSI, Landsat-8 OLI, and Sentinel-3 OLCI sensors. It is shown that the use of an inexpensive and simple-to-manufacture device such as a mini-drifter allows one to obtain operational information about the parameters of coastal currents. In experiments conducted in April–May 2019 in the northeastern part of the Black Sea, it was possible to estimate the velocity of coastal currents and determine the minimum distance that the Black Sea Rim Current approached the coast. The trajectories of mini-drifters have revealed the manifestations of inertial oscillations whose spatial characteristics are almost impossible to measure in any other way. The influence of the vortex structures detected in visible satellite images on the distribution of mini-drifters is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bondur, V.G., Sabinin, K.D., and Grebenyuk, Y.V., Characteristics of inertial oscillations according to the experimental measurements of currents on the Russian shelf of the Black Sea, Izv., Atmos. Oceanic Phys., 2017, vol. 53, no. 1, pp. 120–126. https://doi.org/10.1134/S0001433816050030

    Article  Google Scholar 

  2. Golenko, M.N., Krayushkin, E.V., and Lavrova, O.Yu., Investigation of coastal surface currents in the south-east Baltic Sea based on concurrent drifter and satellite observations and numerical modeling, Sovr. Probl. Dist. Zond. Zemli Kosmosa, 2017, vol. 14, no. 7, pp. 280–296. https://doi.org/10.21046/2070-7401-2017-14-7-280-296

    Article  Google Scholar 

  3. Kostianoy, A.G., Ginzburg, A.I., Lavrova, O.Y., and Mityagina, M.I., Satellite remote sensing of submesoscale eddies in the Russian seas, in The Ocean in Motion. Springer Oceanography, Velarde, M., Tarakanov, R., and Marchenko, A., Eds., Cham: Springer, 2018, pp. 397–413. https://doi.org/10.1007/978-3-319-71934-4_24

    Book  Google Scholar 

  4. Krayushkin, E., Lavrova, O., and Strochkov, A., Application of GPS/GSM Lagrangian mini-drifters for coastal ocean dynamics analysis, Russ. J. Earth Sci., 2019, vol. 19, p. ES1001. https://doi.org/10.2205/2018ES000642

    Article  Google Scholar 

  5. Lavrova, O.Yu., Kostianoy, A.G., Lebedev, S.A., Mityagina, M.I., Ginzburg, A.I., and Sheremet, N.A., Kompleksnyi sputnikovyi monitoring morei Rossii (Integrated Satellite Monitoring of the Russian Seas), Moscow: IKI RAN, 2011.

  6. Lavrova, O.Yu., Mityagina, M.I., Sabinin, K.D., and Serebryany, A.N., Study of hydrodynamic processes in the shelf zone based on satellite data and subsatellite measurements, Sovr. Probl. Dist. Zond. Zemli Kosmosa, 2015, vol. 12, no. 5, pp. 98–129.

    Google Scholar 

  7. Lavrova, O.Yu. and Sabinin, K.D., Manifestations of inertial oscillations in satellite images of the sea surface, Sovr. Probl. Dist. Zond. Zemli Kosmosa, 2016, vol. 13, no. 4, pp. 60–73. https://doi.org/10.21046/2070-7401-2016-13-21-60-73

    Article  Google Scholar 

  8. Lavrova, O.Yu., Krayushkin, E.V., Nazirova, K.R., and Strochkov, A.Ya., The possibility of receiving dynamic and spatial characteristics of processes and phenomena in a coastal zone based on integrated use of quasi-synchronous satellite data, Vestn. TVGU, Ser.: Geogr. Geoecol., 2018, no. 3, pp. 108–124.

  9. Mityagina, M.I. and Lavrova, O.Yu., Satellite observations of eddy and wave processes in the coastal waters of the north-eastern black sea, Issled. Zemli Kosmosa, 2009, no. 5, pp. 72–79.

  10. Mityagina, M.I., Lavrova, O.Y., and Karimova, S.S., Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea, Int. J. Remote Sens., 2010, vol. 17, pp. 4779–4790. https://doi.org/10.1080/01431161.2010.485151

    Article  Google Scholar 

  11. Motyzhev, S.V., Lunev, E.G., and Tolstosheev, A.P., Development of drifter technologies and their introduction into the practice of oceanographic observations in the Black Sea and the world ocean, in Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoe ispol’zovanie resursov shel’fa. Vyp. 24 (Ecological Safety of the Coastal and Shelf Zones and Comprehensive Use of Shelf Resources. Issue 24), Sevastopol’: EKOSI-Gidrofizika, 2011, pp. 259–273.

  12. Nazirova, K.R., Lavrova, O.Yu., Krayushkin, E.V., Soloviev, D.M., Zhuk, E.V., and Alferyeva, Ya.O., Features of river plume parameter determination by in situ and remote sensing methods, Sovr. Probl. Dist. Zond. Zemli Kosmosa, 2019, vol. 16, no. 2, pp. 227–243. https://doi.org/10.21046/2070-7401-2019-16-2-227-243

    Article  Google Scholar 

  13. Niiler, P.P., Davis, R.E., and White, H., Water-following characteristics of a mixed layer drifter, Deep-Sea Res., 1987, vol. 34, no. 11, pp. 1867–1881. https://doi.org/10.1016/0198-0149(87)90060-4

    Article  Google Scholar 

  14. Novelli, G., Guigand, C., Cousin, C., Ryan, E., Laxague, N., Dai, H., Haus, B., and Ozgokmen, T., A biodegradable surface drifter for ocean sampling on a massive scale, J. Atmos. Oceanic Technol., 2017, vol. 34, pp. 2509–2532. https://doi.org/10.1175/JTECH-D-17-0055.1

    Article  Google Scholar 

  15. Ohlmann, J., Molemaker, M., Baschek, B., Holt, B., Marmorino, G., and Smith, G., Drifter observations of submesoscale flow kinematics in the coastal ocean, Geophys. Res. Lett., vol. 44, pp. 330–337. https://doi.org/10.1002/2016GL071537

  16. Poje, A., Ozgokmen, T., Lipphardt, B., Haus, B., Ryan, E., Haza, A., et al., Submesoscale dispersion in the vicinity of the Deepwater Horizon spill, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 12693–12698. https://doi.org/10.1073/pnas.1402452111

    Article  Google Scholar 

  17. Poulain, P.-M., Barbanti, R., Motyzhev, S., and Zatsepin, A., Statistical description of the Black Sea near-surface circulation using drifters in 1993–2003, Deep-Sea Res., 2005, vol. 52, pp. 2250–2274. https://doi.org/10.1016/j.dsr.2005.08.007

    Article  Google Scholar 

  18. Silvestrova, K.P., Myslenkov, S.A., Zatsepin, A.G., Krayushkin, E.V., Samsonov, T.E., Baranov, V.I., and Kuklev, S.B., GPS-drifters for study of water dynamics in the Black Sea shelf zone, Oceanology, 2016, vol. 56, no. 1, pp. 150–156. https://doi.org/10.1134/S0001437016010112

    Article  Google Scholar 

  19. Sverdrup, H.U., Johnson, M.W., and Fleming, R.H., The Oceans, New York: Prentice Hall, 1942.

    Google Scholar 

  20. Sybrandy, A.L. and Niiler, P.P., WOCE/TOGA Lagrangian Drifter Construction Manual. WOCE Report No 63/SIO Report No 91/6, La Jolla. CA: Scripps Inst. Oceanogr., 1991.

  21. Thomas, L.N., Tandon, A., and Mahadevan, A., Submesoscale processes and dynamics, ocean modeling in an eddying regime, Geophys. Monogr. Ser., 2008, vol. 177, pp. 17–37. https://doi.org/10.1029/177gm04

    Article  Google Scholar 

  22. Tolstosheev, A.P., A method of estimation of the results of reconstruction of the trajectories of drifting buoys, Phys. Oceanogr., 2010, vol. 19, no. 6, pp. 358–365. https://doi.org/10.1007/s11110-010-9059-1

    Article  Google Scholar 

  23. Zatsepin, A.G., Baranov, V.I., Kondrashov, A.A., Korzh, A.O., Kremenetskiy, V.V., Ostrovskii, A.G., and Soloviev, D.M., Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation, Oceanology, vol. 57, no. 4, pp. 554–567. https://doi.org/10.1134/S0001437011040205

  24. Zhurbas, V.M., Oh, S.I., and Paka, V.T., Generation of cyclonic eddies in the eastern Gotland basin of the Baltic Sea following dense water inflows: numerical experiments, J. Mar. Syst., 2003, no. 38, pp. 323–336. https://doi.org/10.1016/S0924-7963(02)00251-8

  25. Zhurbas, V.M., Zatsepin, A.G., Grigor’eva, Yu.V., Poyarkov, S.G., Eremeev, V.N., Kremenetsky, V.V., Motyzhev, S.V., Stanichny, S.V., Soloviev, D.M., and Poulain, P.-M., Water circulation and characteristics of currents of different scales in the upper layer of the Black Sea from drifter data, Oceanology, 2004, vol. 44, no. 1, pp. 30–43.

    Google Scholar 

  26. Zhurbas, V., Stipa, T., Malkki, P., Paka, V., Golenko, N., Hense, I., and Sklyarov, V., Generation of subsurface cyclonic eddies in the southeast Baltic Sea: observations and numerical experiments, J. Geophys. Res., 2004, vol. 109, no. C05033. https://doi.org/10.1029/2003JC002074

  27. Zhurbas, V.M., Kuzmina, N.P., and Lyzhkov, D.A., Eddy formation behind a coastal cape in a f low generated by transient longshore wind (numerical experiments), Oceanology, 2017, vol. 57, no. 3, pp. 350–359. https://doi.org/10.1134/S0001437017020229

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to our colleagues from the Sevastopol branch of the Zubov State Oceanographic Institute for the delivery of our mini-drifter found by them to Sevastopol, which allowed us to retrieve valuable information from it.

Funding

The expedition work was funded by the Russian Foundation for Basic Research, grant no. 17-05-00715. The development and improvement of Lagrangian mini-drifters was carried out as part of a state task of the Space Research Institute, Russian Academy of Sciences (“Monitoring,” state registration no. 01.20.0.2.00164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Lavrova.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrova, O.Y., Soloviev, D.M., Strochkov, A.Y. et al. The Use of Mini-Drifters in Coastal Current Measurements Conducted Concurrently with Satellite Imaging. Izv. Atmos. Ocean. Phys. 56, 1022–1033 (2020). https://doi.org/10.1134/S0001433820090157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820090157

Keywords:

Navigation