Skip to main content
Log in

Seasonal Variability and Annual Primary Production of Phytoplankton in the Laptev Sea Assessed by MODIS-Aqua Data

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The seasonal variability of primary production in the Laptev Sea has been studied and its annual values have been determined using the data of a MODIS-Aqua scanner (mean for 2002–2018). Regional-specific algorithms of primary production and chlorophyll are used for this purpose for the first time. Two regions of the Laptev Sea—northwestern and southeastern—are distinguished on the basis of the primary production long-term averaged over many years. Seasonal variations in the primary production in the water column of the northwestern region are characterized by the maximum in June (245 mg C/m2 per day). The maximal primary production in the southeastern region and over the entire area of the Laptev Sea (273–282 mg C/m2 per day and 256–281 mg C/m2 per day, respectively) is recorded from May to July. Daily and annual primary production in the southeastern region are 1.9 and 3 times higher, respectively, than in the northwestern region. The primary production mean for the Laptev Sea is 125 mg C/m2 per day and the total annual primary production is 8 × 1012 g C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aitchison, J. and Brown, J.A.C., The lognormal distribution, Econ. J., 1957, vol. 67, pp. 713–715.

    Article  Google Scholar 

  2. Alekseev, G.V., Aleksandrov, E.I., Glok, N.I., Ivanov, N.E., Smolyanickij, V.M., Harlanenkova, N.E., and Yulin, A.V., Arctic sea ice cover evolution in contemporary climate changes, Issled. Zemli Kosmosa, 2015, no. 2, pp. 5–19.

  3. Arrigo, K.R. and van Dijken, G.L., Secular trends in Arctic Ocean net primary production, J. Geophys. Res., 2011, vol. 116, p. C09011.

    Google Scholar 

  4. Arrigo, K.R. and van Dijken, G.L., Continued increases in Arctic Ocean primary production, Prog. Oceanogr., 2015, vol. 136, pp. 60–70.

    Article  Google Scholar 

  5. Bauch, D., Holemann, J., Willmes, S., Groger, M., Novikhin, A., Nikulina, A., Kassens, H., and Timokhov, L., Changes in distribution of brine waters on the Laptev Sea shelf in 2007, J. Geophys. Res., 2010, vol. 115, p. C11008.

    Article  Google Scholar 

  6. Bauch, D. and Cherniavskaia, E., Water mass classification on a highly variable arctic shelf region: origin of Laptev Sea water masses and implications for the nutrient budget, J. Geophys. Res., 2018, vol. 123, no. 3, pp. 1896–1906.

    Article  Google Scholar 

  7. Behrenfeld, M.J., O’Malley, R.O., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M., and Boss, E.S., Climate-driven trends in contemporary ocean productivity, Nature, 2006, vol. 444, pp. 752–755.

    Article  Google Scholar 

  8. Belanger, S., Babin, M., and Tremblay, J.-E., Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding, Biogeosciences, 2013, vol. 10, pp. 4087–4101.

    Article  Google Scholar 

  9. Biogeokhimiya okeana (Ocean Biogeochemistry), Monin, A.S. and Lisitsin, A.P., Eds., M.: Nauka, 1983, p. 368.

  10. Bondur, V.G., Keeler, R.N., Starchenkov, S.A., and Rybakova, N.I., Monitoring of the pollution of the ocean coastal water areas using space multispectral high-resolution imagery, Issled. Zemli Kosmosa, 2006, no. 6, pp. 42–49.

  11. Bondur, V.G., Vorobyev, V.E., Zamshin, V.V., Serebryany, A.N., Latushkin, A.A., Li, M.E., Martynov, O.V., Hurchak, A.P., and Grinchenko, D.V., Monitoring anthropogenic impact on some coastal water areas of the Black Sea using multispectral satellite imagery, Izv., Atmos. Oceanic Phys., 2018, vol. 54, no. 9, pp. 1008–1022.

    Article  Google Scholar 

  12. Bondur, V.G. and Zubkov, E.V., Identification of the small-scale ocean upper layer optical inhomogeneities by the multispectral space images with high surface resolution. Part 1. The canals and channels drainage effects at the coastal zone, Issled. Zemli Kosmosa, 2005, no. 4, pp. 54–61.

  13. Bopp, L., Monfray, P., Aumont, O., Dufresne, J.-L., Le Treut, H., Madec, G., Terray, L., and Orr, J.C., Potential impact of climate change on marine export primary production, Global Biogeochem. Cycles, 2001, vol. 15, no. 1, pp. 81–99.

    Article  Google Scholar 

  14. Carmack, E.C., Macdonald, R.W., and Jasper, S., Phytoplankton productivity on the Canadian shelf of the Beaufort Sea, Mar. Ecol.: Prog. Ser., 2004, vol. 277, pp. 37–50.

    Article  Google Scholar 

  15. Cavalieri, D.J. and Parkinson, C.L., Arctic sea ice variability and trends, 1979–2010, Cryosphere, 2012, vol. 6, pp. 881–889.

    Article  Google Scholar 

  16. Cavalieri, D.J., Parkinson, C.L., Gloersen, P., and Zwally, H.J., Arctic and Antarctic sea ice concentrations from multichannel passive-microwave satellite data sets: October 1978–September 1995, in User’s Guide. NASA TM, 1997, p. 104647.

    Google Scholar 

  17. Chavez, F.P., Messie, M., and Pennington, J.T., Marine primary production in relation to climate variability and change, Annu. Rev. Mar. Sci., 2011, vol. 3, pp. 227–260.

    Article  Google Scholar 

  18. Comiso, J.C., The rapid decline of multiyear ice cover, J. Clim, 2012, vol. 25. https://doi.org/10.1175/JCLI-D11-00113.1

  19. Comiso, J.C. and Nishio, F., Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data, J. Geophys. Res., 2008, vol. 113, no. C02, p. 07. https://doi.org/10.1029/2007JC0043257

  20. Cooper, L.W., Benner, R., McClelland, J.W., Peterson, B.J., Holmes, R.M., Raymond, P.A., Hansell, D.A., Grebmeier, J.M., and Codispoti, L.A. Linkages among runoff, dissolved organic carbon and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean, J. Geophys. Res., 2005, vol. 110, p. G02013. https://doi.org/10.1029/2005JG000031

    Article  Google Scholar 

  21. Danyushevskaya, A.I., Petrova, V.I., and Yashin, D.S., Organicheskoe veshchestvo donnyh otlozhenij polyarnykh zon Mirovogo okeana (Organic Matter of Sediments in the World Ocean Polar Regions), Leningrad: Nedra, 1990, p. 280.

  22. Demidov, A.B., Gagarin, V.I., Arashkevich, E.G., Makkaveev, P.N., Konyuhov, I.V., Vorob’eva, O.V., and Fedorov, A.V., Spatial variability of primary production and chlorophyll in the Laptev Sea in August–September, Oceanology, 2019, vol. 59, no. 5, pp. 678–691.

    Article  Google Scholar 

  23. Demidov, A.B., Sheberstov, S.V., Vazyulya, S.V., Artem’ev, V.A., Mosharov, S.A., and Khrapko, A.N., Verification of Kara Sea primary production models with field and satellite observations, Oceanology, 2016, vol. 56, no. 6, pp. 799–808.

    Article  Google Scholar 

  24. Demidov, A.B., Sheberstov, S.V., Gagarin, V.I., and Khlebopashev, P.V., Seasonal variation of the satellite derived phytoplankton primary production in the Kara Sea, Oceanology, 2017, vol. 57, no. 1, pp. 91–104.

    Article  Google Scholar 

  25. Demidov, A.B., Kopelevich, O.V., Mosharov, S.A., Sheberstov, S.V., and Vazyulya, S.V., Modelling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms, J. Sea Res., 2017, vol. 125, pp. 1–17.

    Article  Google Scholar 

  26. Demidov, A.B., Mosharov, S.A., and Makkaveev, P.N., Patterns of the Kara Sea primary production in autumn: biotic and abiotic forcing of subsurface layer, J. Mar. Syst., 2014, vol. 132, pp. 130–149.

    Article  Google Scholar 

  27. Dittmar, T. and Kattner, G., The biogeochemistry of the river and shelf system of the Arctic Ocean: a review, Mar. Chem., 2003, vol. 83, pp. 103–120.

    Article  Google Scholar 

  28. Dobrovol’skij, A.D. and Zalogin, V.S., Morya SSSR (Seas of the USSR), Moscow: Moskovskii universitet, 1982.

  29. Falkowski, P., Light-shade adaptation and assimilation numbers, J. Plankton Res., 1981, vol. 3, pp. 203–216.

    Article  Google Scholar 

  30. Fay, A.R. and McKinley, G.A., Global trends in surface ocean pCO2 from in situ data, Global Biogeochem. Cycles, 2013, vol. 27, pp. 541–557.

    Article  Google Scholar 

  31. Frouin, R., McPherson, J., Ueyoshi, K., and Franz, B.A., A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data, Proc. SPIE, 2012. https://doi.org/10.1117/1112.981264

  32. Grebmeier, J.M. and Codispoti, L.A., Linkages among runoff, dissolved organic carbon and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean, J. Geophys. Res., 2005, vol. 110, p. G02013. https://doi.org/10.1029/2005JG000031

    Article  Google Scholar 

  33. Gleitz, M. and Grossmann, S., Phytoplankton primary production and bacterial production, Ber. Polarforschung, 1997, no. 226, pp. 92–94.

  34. Golubeva, E., Platov, G., Malakhova, V., Iakshina, D., and Kraineva, M., Modeling the impact of the Lena River on the Laptev Sea summer hydrography and submarine permafrost state, Bull. Nov. Comp. Center, Num. Model. in Atmosph., 2015, vol. 15, pp. 13–22.

    Google Scholar 

  35. Gregg, W.W., Conkright, M.E., Ginoux, P., O’Reilly, J.O., and Casey, N.W., Ocean primary production and climate: global decadal changes, Geophys. Res. Lett., 2003, vol. 30, no. 15, p. 1809. https://doi.org/10.1029/2003GL016889

    Article  Google Scholar 

  36. Hansell, D.A., Kadko, D., and Bates, N.R., Degradation of terrigenous dissolved organic carbon in the Western Arctic Ocean, Science, 2004, vol. 304, pp. 858–861.

    Article  Google Scholar 

  37. Harrison, W.G. and Cota, G.F., Primary production in the polar waters: relation to nutrient availability, Polar Res., 1991, vol. 10, no. 1, pp. 87–104.

    Article  Google Scholar 

  38. Heiskanen, A.-S. and Keck, A., Distribution and sinking rates of phytoplankton, detritus and particulate biogenic silica in the Laptev Sea and Lena River (Arctic Siberia), Mar. Chem., 1996, vol. 53, pp. 229–245.

    Article  Google Scholar 

  39. Henson, S.A., Sanders, R., and Madsen, E., Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean, Global Biogeochem. Cycles, 2012, vol. 26, p. GB1028. https://doi.org/10.1029/2011GB004099

    Article  Google Scholar 

  40. Hill, V.J., Matrai, P.A., Olson, E., Suttles, S., Steele, M., Codispoti, L.A., and Zimmerman, R.C., Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates, Prog. Oceanogr., 2013, vol. 110, pp. 107–125.

    Article  Google Scholar 

  41. Holmes, M.L. and Creager, Y.S., in Marine Geology and Oceanography of the Arctic Seas, Herman, Y., Ed., Berlin: Springer, 1974, pp. 211–229.

    Google Scholar 

  42. Holmes, R.M., McClelland, J.W., Peterson, B.J., Tank, S.E., Bulygina, E., Eglinton, T.I., Gordeev, V.V., Gurtovaya, T., Raymond, P.A., Repeta, D.J., Staples, R., Striegl, R.G., Zhulidov, A.V., and Zimov, S.A., Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas, Estuaries Coasts, 2012, vol. 35, pp. 369–382.

    Article  Google Scholar 

  43. Holmes, R.M., McClelland, J.W., Raymond, P.A., Frazer, B.B., Peterson, B.J., and Stieglitz, M., Lability of DOC transported by Alaskan rivers to the Arctic Ocean, Geophys. Res. Lett., 2008, vol. 35, p. L03402. https://doi.org/10.1029/2007GL032837

    Article  Google Scholar 

  44. Sathyendranath, S., Ed., Reports of the International Ocean-Colour Coordinating Group, 3 (IOCCG, Dartmouth, Canada, 2000).

    Google Scholar 

  45. Babin, M., Eds., Reports of the International Ocean-Colour Coordinating Group, 16 (IOCCG, Dartmouth, Canada, 2000).

    Google Scholar 

  46. Ivanov, V.V., Alekseev, V.A., Alekseeva, T.A., Koldunov, N.V., Repina, I.A., and Smirnov, A.V., Is Arctic ice cover becoming seasonal?, Issled. Zemli Kosm., 2013, no. 4, pp. 50–65.

  47. Juterzenka, K.V. and Knickmeier, K., Chlorophyll a distribution in water column and sea ice during the Laptev Sea freeze-up study in autumn 1995, in Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Kassens, H., , Eds., Berlin: Springer, 1999.

    Google Scholar 

  48. Juul-Pedersen, T., Arendt, K.E., Mortensen, J., Blicher, M.E., Sogaard, D.H., and Rysgaard, S., Seasonal and interannual phytoplankton production in a sub-Arctic tidewater outlet glacier fjord, SW Greenland, Mar. Ecol.: Progr. Ser., 2015, vol. 524, pp. 27–38.

    Article  Google Scholar 

  49. Kearney, K.A., Stock, C., and Sarmiento, J.L., Amplification and attenuation of increased primary production in a marine food web, Mar. Ecol.: Progr. Ser.,2013, vol. 491, pp. 1–14.

    Article  Google Scholar 

  50. Koblenc-Mishke, O.I. and Vedernikov, V.I., in Biologicheskaya produktivnost’ okeana (Ocean Biological Productivity), vol. 2 of Biologiya okeana (Ocean Biology), Moscow: Nauka, 1977, pp. 183–209.

  51. Kopelevich, O.V., Burenkov, V.I., Ershova, S.V., Sheberstov, S.V., and Evdoshenko, M.A., Application of SeaWiF-S data for studying variability of bio-optical characteristics in the Barents, Black, and Caspian Seas, Deep-Sea Res. II, 2004, vol. 51, pp. 1063–1091.

    Article  Google Scholar 

  52. Kuznetsova, O.A., Kopelevich, O.V., Sheberstov, S.V., Burenkov, V.I., Mosharov, S.A., and Demidov, A.B., Estimation of chlorophyll concentration in the Kara Sea from data of Modis-Aqua satellite scanner, Issled. Zemli Kosmosa, 2013, vol. 54, no. 5, pp. 21–31.

    Google Scholar 

  53. Le Fouest, V., Babin, M., and Trembley, J.-E., The fate of riverine nutrients on Arctic shelves, Biogeosciences, 2013, vol. 10, no. 6, pp. 3661–3677.

    Article  Google Scholar 

  54. Lee, Y.J., Matrai, P.A., Friedrichs, M.A.M., Saba, V.S., Antoine, D., Ardyna, M., Asanuma, I., Babin, M., Belanger, S., Benoit-Gagne, M., Devred, E., Fernandez-Mendez, M., Gentili, B., Hirawake, T., Kang, S.-H., Kameda, T., Katlein, C., Lee, S.H., Lee, Z., Frederic, M., Scardi, M., Smyth, T.J., Tang, S., Turpie, K.R., Waters, K.J., and Westberry, T.K., An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models, J. Geophys. Res., 2015, vol. 120. https://doi.org/10.1002/2015/JC11018

  55. Lewis, K.M., Mitchell, B.G., van Dijken, G.L., and Arrigo, K.R., Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates, Deep-Sea Res., 2016, vol. 130, pp. 14–27.

    Google Scholar 

  56. Lisicin, A.P., Dispersed sediments of the biosphere in the seas and the oceans, in Mirovoi okean (World’s Oceans), vol. 2, Fizika, khimiya i biologiya okeana. Osadkoobrazovanie v okeane i vzaimodeistvie geosfer Zemli (Ocean Physics, Chemistry, and Biology. Sedimentation in the Ocean and Interaction of the Earth’s Geospheres), Nigmatulin, R.I. and Lobkovskii, L.I., Eds., Moscow: Nauchnyi mir, 2014, pp. 424–464.

  57. May, R. and McLean, A., Theoretical Ecology: Principles and Applications, Oxford: Oxford University Press, 2007.

    Book  Google Scholar 

  58. Holmes, R.M., Dunton, K.H., and Macdonald, R.W., The Arctic Ocean estuary, Estuaries Coasts, 2012, vol. 35, pp. 353–368.

    Article  Google Scholar 

  59. McClelland, J.W., Holmes, R.M., Peterson, B.J., Raymond, P.A., Striegl, R.G., Zhulidov, A.V., Zimov, S.A., Zimov, N., Tank, S.E., Spencer, R.G.M., Staples, R., Gurtovaya, T.Y., and Griffin, C.G., Particulate organic carbon and nitrogen export from major Arctic rivers, Global Biogeochem. Cycles, 2016, vol. 30, pp. 629–643.

    Article  Google Scholar 

  60. Mordvintsev, I.N., Platonov, N.G., and Alpatskii, I.V., Multiannual Arctic ice dynamics with satellite microwave data, Issled. Zemli Kosmosa, 2010, no. 1, pp. 40–47.

  61. Mosharov, S.A., Distribution of the primary production and chlorophyll a in the Kara Sea in September of 2007, Oceanology, 2010, vol. 50, no. 6, pp. 885–893.

    Article  Google Scholar 

  62. Opsahl, S., Benner, R., and Amon, R.W., Major flux of terrigenous dissolved organic matter through the Arctic Ocean, Limnol. Oceanogr., 1999, vol. 44, no. 8, pp. 2017–2023.

    Article  Google Scholar 

  63. Osburn, C.L., Retamal, L., and Vincent, W.F., Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea, Mar. Chem., 2009, vol. 115, no. 1–2, pp. 10–20.

    Article  Google Scholar 

  64. Pabi, S., van Dijken, G.L., and Arrigo, K.R., Primary production in the Arctic Ocean, 1998-2006, J. Geophys. Res., 2008, vol. 113, p. C08005. https://doi.org/10.1029/2007/JC004578

    Article  Google Scholar 

  65. Pauly, D. and Christensen, V., Primary production required to sustain global fisheries, Nature, 1995, vol. 374, pp. 255–257.

    Article  Google Scholar 

  66. Platt, T. and Sathyendranath, S., Latitude as a factor in the calculation of primary production, in Ecology of Fjords and Coastal Waters, Skjoldal, H.R., Ed., Amsterdam: Elsevier, 1995, pp. 3–13.

    Google Scholar 

  67. Polyakov, I.V., Pnyushkov, A.V., and Timokhov, T.A., Warming of the intermediate Atlantic Water of the Arctic Ocean in the 2000s, J. Clim., 2012, vol. 25, pp. 8362–8370.

    Article  Google Scholar 

  68. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., and Schlax, M.G., Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 2007, vol. 20, no. 22, pp. 5473–5496.

    Article  Google Scholar 

  69. Rysgaard, S., Nielsen, T.G., and Hansen, B.W., Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland, Mar. Ecol.: Progr. Ser., 1999, vol. 179, pp. 13–25.

    Article  Google Scholar 

  70. Ryther, J.H., Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life vary throughout the world ocean, Science, 1969, vol. 166, pp. 72–76.

    Article  Google Scholar 

  71. Sakshaug, E., in The Organic Carbon Cycle in the Arctic Ocean, Stein, R. and Macdonald, R.W., Eds., Berlin: Springer, 2004, pp. 57–81.

    Google Scholar 

  72. Sakshaug, E. and Slagstad, D., Light and productivity of phytoplankton in polar marine ecosystems—a physiological view, Polar Res., 1991, vol. 10, pp. 69–85.

    Article  Google Scholar 

  73. Salyuk, P.A., Stepochkin, I.E., Bukin, O.A., Sokolova, E.B., Maior, A.Yu., Shambarova Yu.V., and Gorbushkin, A.R., As-sessment of chlorophyll-a concentration using M-ODIS-Aqua and VIIRS satellite radiometers in the Western Arctic and the Bering Sea, Issled. Zemli Kosmosa, 2016, nos. 1–2, pp. 161–172.

  74. Salyuk, P.A., Stepochkin, I.E., Golik, I.A., Bukin, O.A., Pavlov, A.N., and Aleksanin, A.I., Development of empirical algorithms of chlorophyll-a and dissolved colored organic matter concentration retrieval for Far Eastern seas with remote surface color data, Issled. Zemli Kosmosa, 2013, no. 3, pp. 45–57.

  75. Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A., and Stouffer, R., Response of ocean ecosystems to climate warming, Global Biogeochem. Cycles, 2004, vol. 18, p. GB3003. https://doi.org/10.1029/2003GB002134

    Article  Google Scholar 

  76. Shalina, E.V., Changes in northern Russian Seas ice cover and estimation of Northern Sea Route accessibility with satellite monitoring data, Issled. Zemli Kosmosa, 2015, no. 4, pp. 67–78.

  77. Sheberstov, S.V., A system for batch processing of oceanographic satellite data, Sovr. Probl. Dist. Zond. Zemli Kosm., 2015, vol. 12, no. 6, pp. 154–161.

    Google Scholar 

  78. Siegel, D.A., Buesseler, K.O., Doney, S.C., Sailley, S.F., Behrenfeld, M.J., and Boyd, P.W., Global assessment of ocean carbon export by combining satellite observations and foodweb models, Global Biogeochem. Cycles, 2014, vol. 28, no. 3, pp. 181–196.

    Article  Google Scholar 

  79. Slagstad, D., Ellingsen, I.H., and Wassmann, P., Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach, Prog. Oceanogr., 2011, vol. 90, pp. 117–131.

    Article  Google Scholar 

  80. Sorensen, H.L., Meire, L., Juul-Pedersen, T., de Stigter, H.C., Meysman, F.J.R., Rysgaard, S., Thamdrup, B., and Glud, R.N., Seasonal carbon cycling in a Greenland fjord: an integrated pelagic and benthic study, Mar. Ecol.: Progr. Ser., 2015, vol. 539, pp. 1–17.

    Article  Google Scholar 

  81. Sorokin, Yu.I. and Sorokin, P.Yu., Plankton and primary production in the Lena river estuary and in the southeastern Laptev Sea, Estuarine, Coastal Shelf Sci., 1996, vol. 43, pp. 399–418.

    Article  Google Scholar 

  82. Stroeve, J.C., Serreze, M.C., Holland, M.M., Kay, J.E., Malanik, J., and Barrett, A.P., The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Clim. Change, 2012, vol. 110, pp. 1005–1027.

    Article  Google Scholar 

  83. Taucher, J. and Oschlies, A., Can we predict the direction of marine primary production change under global warming?, Geophys. Res. Lett., 2011, vol. 38, p. L02603. https://doi.org/10.1029/2010GL045934

    Article  Google Scholar 

  84. The Venice System for the classification of marine waters according to salinity, Limnol. Oceanogr., 1958, vol. 3, pp. 346–347.

  85. Tuschling, K., Phytoplankton ecology in the arctic Laptev Sea – a comparison of three seasons, Ber. Polarforschung, 2000, no. 347, p. 144.

  86. Vedernikov, V.I. Demidov, A.B., and Sud’bin A.I., Primary production and chlorophyll in the Kara Sea in September 1993, Oceanology, 1995, vol. 4, no. 5, pp. 630–640.

    Google Scholar 

  87. Vetrov, A.A. and Romankevich, E.A., Primary production and fluxes of organic carbon to the seabed in the Eurasian Arctic seas, 2003–2012, Dokl., Earth Sci., 2014, vol. 454, pp. 44–46.

    Article  Google Scholar 

  88. Vetrov, A.A., Romankevich, E.A., and Belyaev, N.A., Chlorophyll, primary production, fluxes, and balance of organic carbon in the Laptev sea, Geochem. Int., 2008, vol. 46, no. 10, pp. 1055–1063.

    Article  Google Scholar 

  89. Vinogradov, M.E., Evolution of pelagic communities and biotic balance of the ocean, in Okeanologiya na starte XXI veka (Oceanology at the Turn of the 21st Century), Vereshchaka, A.L., Ed., Moscow, Nauka, 2008, pp. 257–292.

  90. Vinogradov, M.E., Vedernikov, V.I., Romankevich, E.A., and Vetrov, A.A., Components of the carbon cycle in the Russian Arctic seas: primary production and flux of Corg from the photic layer, Oceanology, 2000, vol. 40, no. 2, pp. 204–215.

    Google Scholar 

  91. Volk, T. and Hoffert, M.I., Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. in The Carbon Cycle and Atmospheric CO 2 Natural Variations Archean to Present. Geophys. Monogr. Ser., Washington, D.C.: AGU, 1985, vol. 32, pp. 99–110.

    Google Scholar 

  92. Zenkevitch, L.A., Biology of the Seas of the USSR, London: George Allen and Unwin, 1963.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Goddard Space Flight Center, Distributed Active Archive Center (GSFC DAAC), NASA, for the possibility of using satellite data of a MODIS-Aqua scanner; the National Oceanographic Data Center (NODC), NOAA, for data on surface water temperature; and the National Snow and Ice Data Center (NSIDC), NOAA, for data on the area of the ice cover.

Funding

This work was performed as part of State Task no. 0149-2019-0008. Field observations were supported by the Russian Foundation for Basic Research, project no. 18-05-60069, The Arctic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Demidov.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, A.B., Sheberstov, S.V. & Gagarin, V.I. Seasonal Variability and Annual Primary Production of Phytoplankton in the Laptev Sea Assessed by MODIS-Aqua Data. Izv. Atmos. Ocean. Phys. 56, 950–962 (2020). https://doi.org/10.1134/S000143382009008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382009008X

Keywords:

Navigation