Skip to main content
Log in

Monitoring Landslide Processes by Means of L-Band Radar Interferometric Observations: Using the Example of the Bureya River Bank Caving

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The possibilities of interferometric surveying using L-band PALSAR-1 and PALSAR-2 space radars on the ALOS-1 and ALOS-2 satellites for studying landslide processes are analyzed using the example of a catastrophic caving of ~18.5 million m3 on the Bureya River in December 2018. The motions of the landslide surface are revealed and their integral amplitude is estimated at time intervals of up to 2 years. It is found that summer images are less informative due to a dramatic loss of coherence due to heavy rainfall; almost all winter pairs of images taken at low negative temperatures have high coherence due to the stability of the dielectric properties of wood vegetation and underlying soils. Based on the analysis of the dynamics of the development of the landslide process over a 10-year time interval, it is shown that soil displacements along the slope were small in 2006–2010 (1.6–1.9 cm/month); in 2015–2016, the displacements increased significantly (4.7–4.9 cm/month), and the maximum measured velocity of displacements was reached in the summer of 2016 (10.7 cm/month). It has been suggested that intensification of the landslide process occurred at the time the filling of the reservoir basin was completed in 2006–2009; the process was triggered by both the initial rise and seasonal fluctuations in water levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Akopian, S.Ts., Bondur, V.G., and Rogozhin, E.A., Technology for monitoring and forecasting strong earthquakes in Russia with the use of the seismic entropy method, Izv., Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 32–51. https://doi.org/10.1134/S1069351317010025

    Article  Google Scholar 

  2. Bamler, R. and Hartl, P., Synthetic aperture radar interferometry, Inverse Probl., 1998, vol. 14.

  3. Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 2002, vol. 40, no. 11, pp. 2375–2383.

    Article  Google Scholar 

  4. Bondur, V.G., Zakharova, L.N., Zakharov, A.I., Chimitdorzhiev, T.N., Dmitriev, A.V., and Dagurov, P.N., Long-term monitoring of the landslide process on Bureya riverbank based on interferometric L-band radar data, Sovr. Probl. Dist. Zond. Zemli Kosm., 2019a, vol. 16, no. 5, pp. 113–119. https://doi.org/10.21046/2070-7401-2019-16-5-113-119

  5. Bondur, V.G. and Starchenkov, S.A., Methods and programs for aerospace imagery processing and classification, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2001, no. 3, pp. 118–143.

  6. Bondur, V.G. and Smirnov, V.M., Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems, Dokl., Earth Sci., 2005, vol. 403, no. 5, pp. 736–740.

    Google Scholar 

  7. Bondur, V.G. and Zverev, A.T., A method of earthquake forecast based on the lineament analysis of satellite images, Dokl., Earth Sci., 2005, vol. 402, no. 4, pp. 561–567.

    Google Scholar 

  8. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., Nechaev, Yu.V., Steblov, G.M., and Shalimov, S.L., Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients, Dokl., Earth Sci., 2007, vol. 414, no. 4, pp. 666–669.

    Article  Google Scholar 

  9. Bondur, V.G. and Zverev, A.T., Lineament system formation mechanisms registered in space images during the monitoring of seismic danger areas, Issled. Zemli Kosmosa, 2007, no. 1, pp. 47–56.

  10. Bondur, V.G., Pulinets, S.A., and Kim, G.A., Role of variations in galactic cosmic rays in tropical cyclogenesis: evidence of Hurricane Katrina, Dokl., Earth Sci., 2008a, vol. 422, no. 7, pp. 1124–1128. https://doi.org/10.1134/S1028334X08070283

    Article  Google Scholar 

  11. Bondur, V.G., Pulinets, S.A., and Uzunov, D., Ionospheric effect of large-scale atmospheric vortex by the example of hurricane Katrina, Issled. Zemli Kosmosa, 2008b, no. 6, pp. 3–11.

  12. Bondur, V.G. and Chimitdorzhiev, T.N., Texture analysis of radar images of vegetation, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2008a, no. 5, pp. 9–14.

  13. Bondur, V.G. and Chimitdorzhiev, T.N., Remote sensing of vegetation by optical microwave methods, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2008b, no. 6, pp. 64–73.

  14. Bondur, V.G., Krapivin, V.F., and Savinykh, V.P., Monitoring i prognozirovanie prirodnykh katastrof (Monitoring and Forecasting of Natural Disasters), Moscow: Nauchnyi mir, 2009.

  15. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., and Nechaev, Yu.V., Connection between variations of the stress-strain state of the Earth’s crust and seismic activity: the example of Southern California, Dokl., Earth Sci., 2010, vol. 430, no. 1, pp. 147–150. https://doi.org/10.1134/S1028334X10010320

    Article  Google Scholar 

  16. Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Oceanic Phys., 2011, vol. 47, no. 9, pp. 1007–1018. https://doi.org/10.1134/S0001433811090039

    Article  Google Scholar 

  17. Bondur, V.G., Krapivin, V.F., Potapov, I.I., and Soldatov, V.Ju., Natural disasters and the environment, Probl. Okr. Sredy Prir. Resur., 2012, no. 1, pp. 3–160.

  18. Bondur, V.G., Garagash, I.A., and Gokhberg, M.B., Large scale interaction of seismically active tectonic provinces: the example of Southern California, Dokl., Earth Sci., 2016a, vol. 466, no. 2, pp. 183–186. .https://doi.org/10.1134/S1028334X16020100

    Article  Google Scholar 

  19. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., and Rodkin, M.V., The evolution of the stress state in Southern California based on the geomechanical model and current seismicity, Izv., Phys. Solid Earth, 2016b, vol. 52, no. 1, pp. 117–128. https://doi.org/10.1134/S1069351316010043

    Article  Google Scholar 

  20. Bondur, V.G., Chimitdorzhiev, T.N., Dmitriev, A.V., Dagurov, P.N., Zakharov, A.I., and Zakharova, L.N., Application of radar polarimetry to monitor changes in backscattering mechanisms in landslide zones using the example of the collapse of the Bureya River bank, Izv., Atmos. Oceanic Phys., 2020, vol. 56, no. 9, pp. 916–926. https://doi.org/10.1134/S0001433820090054

  21. Bondur, V.G., Chimitdorzhiev, T.N., Dmitriev, A.V., and Dagurov, P.N., Spatial anisotropy assessment of the forest vegetation heterogeneity at different azimuth angles of radar polarimetric sensing, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 9, pp. 926–934. https://doi.org/10.1134/S0001433819090093

  22. Chimitdorzhiev, T.N. Zakharov, A.I., Tat’kov, G.I., Khaptanov, V.B., Dmitriev, A.V., Budaev, R.Ts., and Tsybenov, Yu.B., Study of soils cryogenic deformation in Selenga River delta by means of SAR interferometry and georadar sounding, Issled. Zemli Kosmosa, 2011, no. 5, pp. 58–63.

  23. Colesanti, C. and Wasowski, J., Investigating landslides with spaceborne synthetic aperture radar (SAR) interferometry, Eng. Geol., 2006, vol. 88, pp. 173–199.

    Article  Google Scholar 

  24. Epov, M.I., Mironov, V.L., Chymitdorzhiev, T.N., Zakharov, A.I., Zakharova, L.N., Seleznev, V.S., Emanov, A.F., Emanov, A.A., and Fateev, A.V., Observation of Earth’s surface subsidence in the area of Kuzbas underground coal mining with ALOS PALSAR radar interferometry, Issled. Zemli Kosmosa, 2012, no. 4, pp. 26–29.

  25. Ferretti, A., Prati, C., and Rocca, F., Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sens., 2000, vol. 38, no. 5, pp. 2202–2212.

    Article  Google Scholar 

  26. Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A., A new algorithm for processing interferometric data-stacks: SqueeSAR, IEEE Trans. Geosci. Remote Sens., 2011, vol. 49, no. 9, pp. 3460–3470.

    Article  Google Scholar 

  27. Hooper, A., Segall, P., and Zebker, H., Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos, J. Geophys. Res.: Solid Earth, 2007, vol. 112, no. B7, pp. B07407-1–B07407-21.

    Google Scholar 

  28. Kimura, H. and Yamaguchi, Y., Detection of landslide areas using satellite radar interferometry, Photogramm. Eng. Remote Sens., 2000, vol. 66, pp. 337–344.

    Google Scholar 

  29. Korenyuk, I.Yu., Zhivaya Bureya (Alive Bureya), Khabarovsk, RusGidro, 2009.

  30. Kramareva, L.S., Lupyan, E.A., Amel’chenko, Yu.A., Burtsev, M.A., Krasheninnikova, Yu.S., Sukhanova, V.V., and Shamilova, Yu.A., Observation of the hill collapse zone near the Bureya River on December 11, 2018, Sovr. Probl. Dist. Zond. Zemli Kosmosa, 2018, vol. 15, no. 7, pp. 266–271.

    Article  Google Scholar 

  31. Kramareva, L.S., Lupyan, E.A., Amel’chenko, Yu.A., Burtsev, M.A., Krasheninnikova, Yu.S., Sukhanova, V.V., Shamilova, Yu.A., and Boroditskaya, A.V., Observing the progress of blasting operations and channeling in the area of the rock slide on the Bureya River, Sovr. Probl. Dist. Zond. Zemli Kosmosa, 2019, vol. 16, no. 1, pp. 259–265.

    Article  Google Scholar 

  32. Opolzen na r. Bureya (Landslide on Bureya River). http:// omdoki.nextgis.com/resource/103/display (Accessed on July 1, 2019).

  33. Ostroukhov, A.V., Kim, V.I., and Makhinov, A.N., Estimation of the morphometric parameters of the landslide on the Bureya reservoir and its consequences on the basis of remote sensing data and field measurements, Sovr. Probl. Dist. Zond. Zemli Kosm., 2019, vol. 16, no. 1, pp. 254–258.

    Article  Google Scholar 

  34. Prirodnye opasnosti Rossii (Natural Hazards of Russia), vol. 2. Seismicheskie opasnosti (Seismic Hazards) Sobolev, G.A., Ed., Moscow: KRUK, 2000.

  35. Strozzi, T., Wegmuller, U., Werner, C., Wiesmann, A., and Spreckels, V., JERS SAR interferometry for land subsidence monitoring, IEEE Trans. Geosci. Remote Sens., 2003, no. 41, pp. 1702–1708.

  36. Strozzi, T., Teatini, P., Tosi, L., Wegmuller, U., and Werner, C., Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors, J. Geophys. Res.: Earth Surface, 2013, vol. 118, pp. 1177–1191.

    Article  Google Scholar 

  37. Xia, Y., Kaufmann, H., and Guo, X.F., Landslide monitoring in the Three Gorges area using D-INSAR and corner reflectors, Photogramm. Eng. Remote Sens., 2004, no. 70 (10), pp. 1167–1172.

  38. Zakharov, A.I. and Zakharova, L.N., Observation of snow cover dynamics on L-band SAR interferograms, Sovr. Probl. Dist. Zond. Zemli Kosm., 2017, vol. 14, no. 7, pp. 190–197.

    Article  Google Scholar 

  39. Zakharova, L.N. and Zakharov, A.I., Interferometric observation of landslide area dynamics on the Bureya river by means of Sentinel-L radar data in 2017–2018, Sovr. Probl. Dist. Zond. Zemli Kosm., 2019, vol. 16, no. 2, pp. 273–277.

    Article  Google Scholar 

  40. Zakharova, L.N., Zakharov, A.I., and Mitnik, L.M., First results of the assessment of the landslide consequences on the Bureya River bank using Sentinel-1 radar data, Sovr. Probl. Dist. Zond. Zemli Kosm., 2019, vol. 16, no. 2, pp. 69–74.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to JAXA for the ALOS PALSAR and ALOS‑2 PALSAR‑2 radar data provided as part of the RA-6 scientific projects and to the German Aerospace Center (DLR) for the TerraSAR X/TanDEM X data.

Funding

These studies were carried out as part of the state assignments of the AEROCOSMOS Research Institute for Aerospace Monitoring no. 075-00896-19-01 (theme no. ON58-2019-0030), the Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Institute of Physical Materials Science, Siberian Branch, Russian Academy of Science, and with support in part from the Russian Foundation for Basic Research (grant no. 18-07-00816).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Bondur, A. I. Zakharov or T. N. Chimitdorzhiev.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Zakharova, L.N., Zakharov, A.I. et al. Monitoring Landslide Processes by Means of L-Band Radar Interferometric Observations: Using the Example of the Bureya River Bank Caving. Izv. Atmos. Ocean. Phys. 56, 1053–1061 (2020). https://doi.org/10.1134/S0001433820090078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820090078

Keywords:

Navigation