Skip to main content
Log in

New Circulation Features in the Okhotsk Sea from a Numerical Model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Using the eddy-permitting model, circulation in the Okhotsk Sea and in an adjacent area of the Pacific Ocean is retrospectively simulated from 1991 to 2000. It is shown that the Sea has four types of circulation, each one for its own season with a strengthening of all currents in winter and a weakening in summer. We estimate and analyze the values of the simulated monthly-averaged volume transport of the main currents: the coastal branch of the East Sakhalin Current, the over-slope branch of the East Sakhalin Current, the coastal branch of the North Okhotsk Current, the over-slope branch of the North Okhotsk current, the Middle Current and the West Kamchatka Current. In contrast to the conventional circulation schemes, the North Okhotsk Current is found to consist of two branches, one over a continental slope and another along the northern shelf. The simulation results on the double-branch structure of this current are found to be in a reasonable agreement with instrumental measurements, CTD observations, satellite data and other oceanography reanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Verkhunov, A.V., Comprehensive studies of the ecosystem of the Sea of Okhotsk, in Ekologiya morei Rossii (Ecology of the Russian Seas) Moscow VNIRO, 1997) pp. 6–17 [.

  2. Katsumata, K. and Yasuda, I., “Estimates of non-tidal exchange transport between the Sea of Okhotsk and the North Pacific,” J. Oceanogr., 2010, vol. 66, pp. 489–504.

    Article  Google Scholar 

  3. Shevchenko, G.V., and Kusailo, O.V., “Analysis of currents near the Sakhalin south-eastern coast from instrumental measurements,” Russ. Meteorol. Hydrol., 2007, vol. 32, pp. 658–667.

    Article  Google Scholar 

  4. Matsuda, J., Mitsudera, H., Nakamura, T., Sasajima, Y., Hasumi, H., and Wakatsuchi, M., “Over-turning circulation that ventilates the intermediate layer of the Sea of Okhotsk and the North Pacific: The role of salinity advection,” J. Geophys. Res.: Oceans, 2015, vol. 120, pp. 1462–1489.

    Article  Google Scholar 

  5. Shcherbina, A.Y., Talley, L.D., and Rudnick, D.L., “Dense water formation on the north-western shelf of the Okhotsk Sea: 2. Quantifying the transports,” J. Geophys. Res., 2004, vol. 109, p. 09.

  6. Gladyshev, S., Talley, L., Kantakov, G., Khen, G., and Wakatsuchi, M., “Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water,” J. Geophys. Res.: Oceans, 2003, vol. 108, p. 3186.

    Article  Google Scholar 

  7. M. Itoh, K. I. Ohshima, and Wakatsuchi, M., “Distribution and formation of Okhotsk Sea intermediate Water: An analysis of isopycnal climatological data,” J. Geophys. Res.: Oceans, 2003, vol. 108, p. 3258.

    Article  Google Scholar 

  8. Nakamura, T., and Awaji, T., “Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: A three-dimensional non-hydrostatic model experiment,” J. Geophys. Res.: Oceans, 2004, vol. 109, p. 07.

  9. Talley, L.D., “An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific,” Deep-Sea Res., Part A, 1991, vol. 38, pp. S171–S190.

    Article  Google Scholar 

  10. Yasuda, I., “Hydrographic structure and variability in the Kuroshio–Oyashio transition area,” J. Oceanogr., 2003, vol. 59, pp. 389–402.

    Article  Google Scholar 

  11. Yasuda, I., Okuda, K., and Shimizu, Y., “Distribution and modification of North Pacific intermediate water in the Kuroshio–Oyashio interfrontal zone,” J. Phys. Oceanogr., 1996, vol. 26, pp. 448–465.

    Article  Google Scholar 

  12. Lee, H.J., Yoon, J.H., Kawamura, H., and Kang, H.W., “Comparison of RIAMOM and MOM in modelling the East Sea/Japan Sea Circulation,” Ocean Polar Res., 2003, vol. 25, pp. 287–302.

    Article  Google Scholar 

  13. Fayman, P.A. and Yoon, J.H., “The numerical simulation of seasonal variability of the upper circulation in the Okhotsk Sea,” Rep. Res. Inst. Appl. Mech., Kyushu Univ., 2012, vol. 142, pp. 1–20.

    Google Scholar 

  14. Ponomarev, V., Fayman, P., Prants, S., Budyansky, M. and Uleysky, M., “Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea,” Ocean Modell., 2018, vol. 126, pp. 43–55.

    Article  Google Scholar 

  15. Stepanov, D.V., “Estimating the baroclinic Rossby radius of deformation in the Sea of Okhotsk,” Russ. Meteorol. Hydrol., 2017, vol. 42, no. 9, pp. 601–606.

    Article  Google Scholar 

  16. You, S.H. and Yoon, J.H., “High- resolution numerical simulation of the Pacific Ocean,” Asia-Pacific J. Atm-os. Sci., 2010, vol. 46, pp. 97–112.

    Article  Google Scholar 

  17. Barnier, B., Ocean Modeling and Parameterization, vol. 516 of NATO Sci. Ser. (Ser. C: Math. Phys. Sci.), Chassignet, E.P. and Verron, J. Eds., Dordrecht: Springer, 1998.

  18. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., and Schlax, M.G., “Daily high-resolution-blended analyses for sea surface temperature,” J. Clim., 2007, vol. 20, pp. 5473–5496.

    Article  Google Scholar 

  19. Vorosmarty, C.J., Fekete, B.M., and Tucker, B.A., Global River Discharge (1807–1991), Oak Ridge, TN: ORNL DAAC, 1998.

    Google Scholar 

  20. Boyer, T., Levitus, S., Garcia, H., Locarnini, R.A., Stephens, C. and Antonov, J., “Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid,” Int. J. Climatol., 2005, vol. 25, pp. 931–945.

    Article  Google Scholar 

  21. Yelland, M., and Taylor, P.K., “Wind stress measurements from the open ocean,” J. Phys. Oceanogr., 1996, vol. 26, pp. 541–558.

    Article  Google Scholar 

  22. Supranovich, T.I., Yurasov, G.I., and Kontakov, G.A., “Nonperiodic currents and water exchange in La Perouse strait,” Russ. Meteorol. Hydrol., 2001, no. 3, pp. 59–63.

  23. Aota, M. and Ishikawa, M., “Fresh water supply to the sea of Okhotsk and volume transport of Soya Warm Curren,” Bull. Hokkaido Natl. Fish. Res. Inst., 1991, vol. 55, pp. 109–113.

    Google Scholar 

  24. Aota, M., Nagata, Y., Inaba, H., Matsuyama, Y., Ono, N., and Kanari, S., in Ocean Characteristics and Their Changes, Tokyo: Koseisya-Koseikaku, 1985, pp. 164–187.

    Google Scholar 

  25. Tanaka, I. in Proc. 15th Int. Symp. on Okhotsk Sea and Sea Ice (Mombetsu, Japan, 2000), pp. 149–152.

  26. Tanaka I. and Nakata, A., in Proc. Second PICES Workshop on the Okhotsk Sea and Adjacent Areas (1999), pp. 173–176.

  27. Shevchenko, G.V., Kantakov, G.A., and Chastikov, V.N., “Results of direct measurements of the currents in the La Perouse (Soya) Strait,” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2005, vol. 140, pp. 203–227.

    Google Scholar 

  28. Saveliev, A.V., Danchenkov, M.A., and Hong, G.H. “Volume transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk,” Ocean Polar Res., 2002, vol. 24, pp. 147–152.

    Article  Google Scholar 

  29. Sugimoto, T., in The Physical Oceanography of Sea Straits, Dordrecht: Kluwer, 1990, pp. 191–209.

    Google Scholar 

  30. M. Matsuyama, M. Wadaka, T. Abe, M. Aota, and Koike, Y., “Current structure and volume transport of the Soya Warm Current in summer,” J. Oceanogr., 2006, vol. 62, pp. 197–205.

    Article  Google Scholar 

  31. Fukamachi, Y., Tanaka, I., Ohshima, K.I., Ebuchi, N., Mizuta, G., Yoshida, H., Takayanagi, S., and Wakatsuchi, M., “Volume transport of the Soya Warm Current revealed by bottom-mounted ADCP and ocean-radar measurement,” J. Oceanogr., 2008, vol. 64, pp. 385–392.

    Article  Google Scholar 

  32. Kusailo, O.V., Shevchenko, G.V., and Chastikov, V.N., “Extreme nonperiodic currents on the northeastern shelf of Sakhalin Island,” Dokl. Earth Sci., 2013, vol. 448, pp. 97–102.

    Article  Google Scholar 

  33. Mizuta, G., Fukamachi, Y., Ohshima, K.I., and Wakatsuchi, M., “Structure and seasonal variability of the East Sakhalin Current,” J. Phys. Oceanogr., 2003, vol. 33, pp. 2430–2445.

    Article  Google Scholar 

  34. Ohshima, K.I., Wakatsuchi, M., Fukamachi, Y., and Mizuta, G., “Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters,” J. Geophys. Res.: Oceans, 2002, vol. 107, p. 3195.

    Article  Google Scholar 

  35. Popudribko, K.K., Shevchenko, G.V., and Putov, V.F., “Estimation characteristics of sea currents in the Piltun–Astokh oil- and gas-bearing area (north-eastern Sakhalin shelf),” Russ. Meteorol. Hydrol. 1998, no. 4, pp. 60–71.

  36. Fujisaki, A., Mitsudera, H., and Yamaguchi, H., “Dense shelf water formation process in the Sea of Okho-tsk based on an ice-ocean coupled model,” J. Geophys. Res., 2011, vol. 116, p. 03005.

    Article  Google Scholar 

  37. Fujisaki, A., Yamaguchi, H., Duan, F., and Sagawa, G., “Improvement of short-term sea ice forecast in the southern Okhotsk Sea,” J. Oceanogr., 2007, vol. 63, pp. 775–790.

    Article  Google Scholar 

  38. Sasajima, Y., Hasumi, H., and Nakamura, T., “A sensitivity study of the dense shelf water formation in the Okhotsk Sea” J. Geophys. Res., 2010, vol. 115, p. C11007 (2010).

  39. Stepanov, D.V., Diansky, N.A., and Fomin, V.V., “Eddy energy sources and mesoscale eddies in the Sea of Okhotsk,” Ocean Dyn., 2018, vol. 68, pp. 825–845.

    Article  Google Scholar 

  40. Uchimoto, K., Nakamura, T., Nishioka, J., Mitsudera, H., Yamamoto-Kawai, M., Misumi, K., and Tsumune, D., “Simulations of chlorofluorocarbons in and around the Sea of Okhotsk: Effects of tidal mixing and brine rejection on the ventilation,” J. Geophys. Res., 2011, vol. 116, p. C02034.

    Google Scholar 

  41. Forget, G., Campin, J.-M., Heimbach, P., Hill, C.N., Ponte, R.M., and Wunsch, C., “ECCO version 4: an integrated framework for non-linear inverse modelling and global ocean state estimation,” Geosci. Model Dev., 2015, vol. 8, no. 10, pp. 3071–3104.

    Article  Google Scholar 

  42. Usui, N., Wakamatsu, T., Tanaka, Y., Hirose, N., Toyoda, T., Nishikawa, S., Fujii, Y., Takatsuki, Y., Igarashi, H., Nishikawa, H., Ishikawa, Y., Kuragano, T., and Kamachi, M., “Four-dimensional variational ocean reanalysis: a 30-year high-resolution dataset in the western North Pacific (FORA-WNP30),” J. Oceanogr., 2017, vol. 73, pp. 205–233.

    Article  Google Scholar 

  43. Miyazawa, Y., Varlamov, S.M., Miyama, T. Guo, X., Hihara, T., Kiyomatsu, K., Kachi, M., Kurihara, Y., and Murakami, H., “Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three-dimensional variational scheme,” Ocean Dyn., vol. 67, pp. 713–728 (2017).

    Article  Google Scholar 

  44. Blockley, E.W., Martin, M.J., McLaren, A.J., Ryan, A.G., Waters, J., Lea, D.J., Mirouze, I., Peterson, K.A., Sellar, A., and Storkey, D., “Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts,” Geosci. Model Dev., 2014, vol. 7, pp. 2613–2638.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The Okhotsk Sea model was setup at the Supercomputing Division and Information Technology Center (University of Tokyo) and at the Shared Far Eastern Computing Resource Center (IACP FEB RAS, Vladivostok).

Funding

The work was supported by the Russian Science Foundation (project no. 19-17-00006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Prants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayman, P.A., Prants, S.V., Budyansky, M.V. et al. New Circulation Features in the Okhotsk Sea from a Numerical Model. Izv. Atmos. Ocean. Phys. 56, 618–631 (2020). https://doi.org/10.1134/S0001433820060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820060043

Keyword:

Navigation