Skip to main content
Log in

Statistical Characteristics of the Ensemble of Internal Wave Solitons

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Numerical simulation is used to study the statistical characteristics of an ensemble of internal wave solitons propagating under conditions close to those of the Australian shelf. The distribution of the pulse amplitude depending on the traveled distance, as well as statistical moments such as skewness and kurtosis, are constructed. It is shown that both moments decrease by about 20% with distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Small, J., Sawyer, T.C. and Scott, J.C., “The evolution of an internal bore at the Malin shelf break,” Ann. Geophys., 1999, vol. 17, pp. 547–565.

    Article  Google Scholar 

  2. Holloway, P., Pelinovsky, E., Talipova, T., and Barnes, B., “A nonlinear model of internal tide transformation on the Australian North West shelf,” J. Phys. Oceanogr. 27 (6), J. Phys. Oceanogr., 1997, vol. 27, no. 6, pp. 871–896 (1997).

  3. Alford, M.H., Lien, R.-Ch., Simmons, H., Klymak, J., Ramp, S., Yang, Y.J., Tang, D., and Chang, M.-H., “Speed and evolution of nonlinear internal waves transiting the South China Sea,” J. Phys. Oceanogr., 2010, vol. 40, pp. 1338–1355.

    Article  Google Scholar 

  4. Bourgault, D., Janes, D.S., and Galbraith, P.S., “Observations of a large-amplitude internal wave train and its reflection off a steep slope,” J. Phys. Oceanogr., 2010, vol. 41, pp. 586–600.

    Article  Google Scholar 

  5. Lamb, K., and Farmer, D., “Instabilities in an internal solitary-like wave on the Oregon shelf,” J. Phys. Oceanogr., 2010, vol. 41, pp. 67–87.

    Article  Google Scholar 

  6. Vlasenko, V., and Stashchuk, N., “Internal tides near the Celtic Sea shelf break: A new look at a well known problem,” Deep Sea Res., Part I, 2015, vol. 103, pp. 24–36.

    Article  Google Scholar 

  7. Dolgikh, G.I., Novotryasov, V.V., Yaroshchuk, I.O., and Permyakov, M.S., “Intense undular bores on the autumn pycnocline of shelf waters of Peter the Great Bay (Sea of Japan),” Dokl. Earth Sci., 2018, vol. 479, pp. 379–383.

    Article  Google Scholar 

  8. Morozov, E.G., and Paka, V.T., “Internal waves in a high-latitude region,” Oceanology, 2010, vol. 50, pp. 668–674.

    Article  Google Scholar 

  9. Grimshaw, R., Silva, J.C.B., and Magalhaes, J.M., “Modelling and observations of oceanic nonlinear internal wave packets affected by the Earth’s rotation,” Ocean Modell., 2017, vol. 116, pp. 146–158.

    Article  Google Scholar 

  10. Kurkina, O., Talipova, T., Soomere, T., Kurkin, A., and Rybin, A., “The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk,” Est. J. Earth Sci., 2017, vol. 66, no. 4, pp. 238–255.

    Article  Google Scholar 

  11. Zhang, W., Didenkulova, I., Kurkina, O., Cui, Y., Haberkern, J., Aepfler, R., Santos, A.I., Zhang, H., and Hanebuth, T.J.J., “Internal solitary waves control offshore extension of mud depocenters on the NW Iberian shelf,” Mar. Geol., 2019, vol. 409, pp. 15–30.

    Article  Google Scholar 

  12. Chen, L., Zheng, Q., Xiong, X., Yuan, Y., Xie, H., Guo, Y., Long, Y., and Yun, Sh., “Dynamic and statistical features of internal solitary waves on the continental slope in the Northern South China Sea derived from mooring observations,” J. Phys. Oceanogr., 2019, vol. 124, no. 6, pp. 4078–4097.

    Google Scholar 

  13. Shapiro, G.I., Shevchenko, V.P., Lisitsyn, A.P., Serebryanyi, A.N., Politova, N.P., and Akivis, T.M., “The effect of internal waves on the distribution of suspended matter in the Pechora Sea,” Dokl. Akad. Nauk, 2000, vol. 373, no. 1, pp. 105–107.

    Google Scholar 

  14. Sherwin, T., Vlasenko, V., Stashchuk, N., Jeans, D.G., and Jones, B., “Along-slope generation as an explanation for some unusually large internal bores,” Deep-Sea Res., 2002, vol. 49, pp. 1787–1799.

    Article  Google Scholar 

  15. Liang, Ch., Zheng, Q., Xiong, X., Yuan, Y., Xie, H., Guo, Y., Yu, L., and Yun, Sh., “Dynamic and statistical features of internal solitary waves on the continental slope in the Northern South China Sea derived from mooring observations,” J. Geophys. Res., 2019, vol. 124, no. 6, pp. 4078–4097.

    Article  Google Scholar 

  16. Talipova, T., Pelinovsky, E., Kurkina, O., and Kurkin, A., “Numerical modeling of the internal dispersive shock wave in the ocean,” Shock Vibration, 2015, vol. 2015, p. 875619.

    Article  Google Scholar 

  17. Zhang, X., Huang, X., Zhang, Zh., Zhou, Ch., Tian, J., and Zhao, W., “Polarity variations of internal solitary waves over the continental shelf of the Northern South China Sea: Impacts of seasonal stratification, mesoscale eddies, and internal tides,” J. Phys. Oceanogr., 2018, vol. 48, pp. 1349–1364.

    Article  Google Scholar 

  18. Chanson, H., Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations, Singapore: World Scientific, 2011.

    Book  Google Scholar 

  19. Pelinovsky, E.N., Shurgalina, E.G., and Rodin, A.A., “Criteria for the transition from a breaking bore to an undular bore,” Izv., Atmos. Ocean. Phys. 2015, vol. 51, no. 5, pp. 530–533.

    Article  Google Scholar 

  20. Talipova, T.G., Pelinovsky, E.N., Kurkin, A.A., and Kurkina, O.E., “Modeling the dynamics of intense internal waves on the shelf,” 50, Izv., Atmos. Ocean. Phys. 2014, vol. 50, pp. 630–637.

    Article  Google Scholar 

  21. Tan, D., Zhou, J., Wang, X.X., and Wang, Zh., “Combined effects of topography and bottom friction on shoaling internal solitary waves in the South China Sea,” Appl. Math. Mech., 2019, vol. 40, no. 4, pp. 421–434.

    Article  Google Scholar 

  22. Grimshaw, R., Pelinovsky, E., and Talipova, T., “The modified Korteweg-De Vries equation in the theory of the large-amplitude internal waves,” Nonlin. Proc. Geophys., 1997, vol. 4, pp. 237–250.

    Article  Google Scholar 

  23. Grimshaw, R., Pelinovsky, E., and Talipova, T., “Modeling internal solitary waves in the coastal ocean,” Surv. Geophys., 2007, vol. 28, no. 2, pp. 273–298.

    Article  Google Scholar 

  24. Garret, C.J.R., and Munk, W.H., “Internal waves in the ocean,” Annu. Rev. Fluid Mech., 1979, vol. 11, pp. 339–369.

    Article  Google Scholar 

  25. Morozov, E.G., Frey, D.I., Gladyshev, S.V., Klyuvitkin, A.A., and Novigatsky, A.N., “Internal tides in the Denmark Strait,” Izv., Atmos. Ocean. Phys. 55, 295–302 (2019).

    Article  Google Scholar 

  26. Ivanov, V.A., Pelinovsky, E.N., and Talipova, T.G., “The long-time prediction of intense internal wave heights in the tropical region of the Atlantic,” J. Phys. Oceanogr., 1993, vol. 23, no. 9, pp. 2136–2142.

    Article  Google Scholar 

  27. Ivanov, V.A., Pelinovsky, E.N., and Talipova, T.G., “Recurrence frequency of internal wave amplitudes in the Mediterranean,” Oceanology, 1993, vol. 33, no. 2, pp. 180–184.

    Google Scholar 

  28. Pelinovsky, E., Holloway, P., and Talipova, T., “A statistical analysis of extreme events in current variations due to internal waves from the Australian North West Shelf,” J. Geophys. Res., 1995, vol. 100, no. C12, pp. 24831–24839.

    Article  Google Scholar 

  29. Morozov, E.G., Pelinovsky, E.N., and Talipova, T.G., “Frequency of internal wave repetition at the Mesopolygon-85 in the Atlantic,” Okeanologiya, 1998, vol. 38, no. 4, pp. 521–527.

    Google Scholar 

  30. Talipova, T., Pelinovsky, E., Kurkina, O., Giniyatullin, A., and Kurkin, A., “Exceedance frequency of appearance of the extreme internal waves in the World Ocean,” Nonlin. Proc. Geophys., 2018, vol. 25, pp. 511–519.

    Article  Google Scholar 

  31. Zimin, A.V., and Svergun, E.I., “Short-period internal waves in the shelf areas of the White Sea, Barents Sea, and the Sea of Okhotsk: assessment of the repeatability of extreme heights and dynamic effects in the bottom layer,” Fund. Prikl. Gidrofiz., 2018, vol. 11, no. 4, pp. 66–72.

    Google Scholar 

  32. Wang, T., and Gao, T., “Statistical properties of high-frequency internal waves in Quindao offshore area of the Yellow Sea,” Chin. J. Oceanol. Limnol., 2002, vol. 20, no. 1, 16–21.

    Article  Google Scholar 

  33. Zheng, Q., Susanto, R.D., Ho, Ch.-R., Song, Y.T. and Xu, Q., “Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea,” J. Geophys. Res., 2007, vol. 112, pp. C03021.

    Google Scholar 

  34. Badiey, M., Wan, L., and Lynch, J.F., “Statistics of nonlinear internal waves during the Shallow Water 2006 Experiment,” J. Phys. Oceanogr., 2016, vol. 33, pp. 839–846.

    Google Scholar 

  35. Colosi, J.A., Kumar, N., Suanda, S.H., Freismuth, T.M., and MacMahan, J.H., “Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California,” J. Phys. Oceanogr., 2018, vol. 48, pp. 123–143.

    Article  Google Scholar 

  36. Agafontsev, D.S. and Zakharov, V.E., “Integrable turbulence generated from modulational instability of cnoidal waves,” Nonlinearity, 2016, vol. 29, pp. 3551–3578.

    Article  Google Scholar 

  37. Shurgalina, E.G. and Pelinovsky, E.N., “Nonlinear dynamics of a soliton gas: modified Korteweg-De Vries equation framework,” Phys. Lett. A, 2016, vol. 380, no. 24, pp. 2049–2053.

    Article  Google Scholar 

  38. El, G.A., “Critical density of a soliton gas,” Chaos, 2016, vol. 26, pp. 023105.

    Article  Google Scholar 

  39. Gelash, A.A. and Agafontsev, D.S., “Strongly interacting soliton gas and formation of rogue waves,” Phys. Rev. E, 2018, vol. 98, pp. 1–11.

    Article  Google Scholar 

  40. Pelinovsky, E., and E. Shurgalina, “KdV soliton gas: Interactions and turbulence,” in Advances in Dynamics, Patterns, Cognition: Challenges in Complexity, Pikovsky, I.S., Rulkov, N.F. and Tsimring, L.S., Eds., Cham: Springer, 2017, pp. 295–306.

    Google Scholar 

  41. Didenkulova (Shurgalina), E.G., “Numerical modeling of soliton turbulence within the focusing Gardner equation: rogue wave emergence,” Physica D, 2019, vol. 399, pp. 35–41.

    Article  Google Scholar 

  42. Pelinovsky, E.N., and Shurgalina, E.G., Formation of freak waves in a soliton gas described by the modified Korteweg–de Vries equation,” Dokl. Phys. 2016, vol. 61, pp. 423–426.

    Article  Google Scholar 

  43. Pelinovsky, E.N., Shurgalina, E.G., Sergeeva, A.V., Talipova, T.G., El, G.A., and Grimshaw, R.H.J., “Two-soliton interaction as an elementary act of soliton turbulence in integrable systems,” Phys. Lett. A, 2013, vol. 377, nos. 3-4, pp. 272–275.

    Article  Google Scholar 

  44. Pelinovsky, E.N., and Shurgalina, E.G., “Two-soliton interaction within the framework of the modified Korteweg-De Vries equation,” Radiophys. Quantum Electron. (Engl. Transl.), 2018, vol. 57, pp. 737–744.

  45. Slyunyaev, A.V., “Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity,” J. Exp. Theor. Phys., 2001, vol. 92, pp. 529–534.

    Article  Google Scholar 

  46. Shurgalina, E.G., “Mechanism of the emergence of rogue waves as a result of the interaction between internal solitary waves in a stratified basin, Fluid Dyn., 2018, vol. 53, pp. 59–64.

    Article  Google Scholar 

  47. Shurgalina, E.G., “Features of the paired soliton interactions within the framework of the Gardner equation,” Radiophys. Quantum Electron. (Engl. Transl.), 2018, vol. 60, pp. 703–708.

  48. Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., Choi, B.H., Brovchenko, I., Terletska, K., and Kim, D.C., “Internal solitary wave transformation at the bottom step in two-layer flow: the Gardner and Navier-Stokes frameworks,” Nonlin. Proc. Geophys., 2009, vol. 16, pp. 33–42.

    Article  Google Scholar 

  49. B. Fronberg, A Practical Guide to Pseudospectral Methods, Cambridge: Cambridge University Press, 1998.

    Google Scholar 

  50. Didenkulova, E.G., and Pelinovsky, E.N., “The role of a thick soliton in the dynamics of the soliton gas within the framework of the Gardner equation,” Radiophys. Quantum Electron. (Engl. Transl.), 2019, vol. 61, pp. 623–632.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-05-00161, 19-35-60022, and 18-02-00042. The results were also obtained with support from the Presidential Program for State Support of Leading Scientific Schools of the Russian Federation, grant no. NSh-2485.2020.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Didenkulova.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenkulova, E.G., Pelinovsky, E.N. & Talipova, T.G. Statistical Characteristics of the Ensemble of Internal Wave Solitons. Izv. Atmos. Ocean. Phys. 56, 556–563 (2020). https://doi.org/10.1134/S0001433820060031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820060031

Keywords:

Navigation