Skip to main content
Log in

Role of Vortex Structures in the Surface Layer in the Radiation Interaction between Underlying Surface and Air

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

By the 1950s, it was revealed that assumptions of the semiempirical statistical theory of the surface layer created by A.S. Monin and A.M. Obukhov, strictly speaking, fail. The existence of organized (coherent) structures in the surface layer and their main role in the advective (turbulent) vertical transfer of heat, momentum, and impurities have been experimentally proved. The decisive role of the radiation in the formation of the air temperature profile is obvious. This work is an attempt to qualitatively describe how organized vortex structures interact with radiation thermal conductivity during heat transfer from the underlying surface to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. S. Monin and A. M. Obukhov, “Main regularities of turbulent exchange in the near-surface layer,” Tr. Inst. Geofiz. AN SSSR, No. 24 (151), 163–187 (1954).

    Google Scholar 

  2. T. Foken, “50 years of the Monin–Obukhov similarity theory,” Boundary-Layer Meteorol. 119 (3), 431–447 (2006).

    Article  Google Scholar 

  3. K. Schwarzschield, “Über Das Gleichungen der Sonnenatmosphäre,” Nachr. von der K. Ges. Wiss. Goettingen, Math.-Phys. Kl., No. 1, 41 (1906).

  4. R. Emden, “Über Stralungsgleichgewicht und atmosphärische Strahlung,” Sitzungsber. – K. Bayer. Akad. Wiss., Math.-Naturwiss. Kl., 43, 55–142 (Muenchen, 1913).

  5. A. A. Fridman, “On the height distribution of temperature in the presence of radiative heat transfer between the Earth and the Sun,” Izv. Gl. Fiz. Obs., No. 2, 42 (1920).

  6. E. S. Kuznetsov, “Radiative heat transfer in a moving liquid medium,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5 (1), 3–28 (1941).

    Google Scholar 

  7. I. A Gorchakova., T. A. Tarasova, E. A. Ustinov, and E. M. Feigel’son, “On the radiation heating of the surface air layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 24 (5), 527–531 (1988).

    Google Scholar 

  8. M. I. Mordukhovich and L. R. Tsvang, “Direct measurements of turbulent fluxes at two levels in the surface layer of the atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 2 (8), 786–803 (1966).

    Google Scholar 

  9. B. M. Koprov and D. Yu. Sokolov, “Experimental study of heat flow variability in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 11 (7), 743–747 (1975).

    Google Scholar 

  10. S. L. Zubkovskii, V. P. Kukharets, and L. R. Tsvang, “Vertical profiles of the turbulence characteristics in the surface and boundary layers of the atmosphere under unstable stratification,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 15 (1), 44–51 (1979).

    Google Scholar 

  11. D. A. Haugen, J. C. Kaimal, and E. F. Bradley, “An experimental study of Reynolds stress and heat flux in the atmospheric surface layer,” Q. J. R. Meteorol. Soc. 97, 168–170 (1971).

    Article  Google Scholar 

  12. B. M. Koprov and L. R. Tsvang, “Direct measurements of the turbulent heat flux onboard an aircraft,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 1 (6), 643–648 (1965).

    Google Scholar 

  13. B. A. Kader, “Three-layer structure of an unstably stratified atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 24, 907–918 (1988).

    Google Scholar 

  14. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics, Vol. 1 (Nauka, Moscow, 1965) [in Russian], p. 639.

    Google Scholar 

  15. R. A. Antonia, A. J. Chambers, C. A. Friehe, and C. W. Van Atta, “Temperature ramps in the atmospheric surface layer,” J. Atmos. Sci. 36 (1), 99–108 (1979).

    Article  Google Scholar 

  16. B. M. Koprov, V. M. Koprov, and T. I. Makarova, “Convective structures in the atmospheric surface layer,” Izv., Atmos. Oceanic Phys. 36 (1) 37–47 (2000).

    Google Scholar 

  17. B. M. Koprov, “The effect of thermal structure on the excess and asymmetry of probability distributions for the time derivative of temperature,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 24 (6), 579–587 (1988).

    Google Scholar 

  18. J. M. Rees, B. Koprov, V. Koprov, and W. B. Zimmerman, “On solitary wave mediated heat exchange in the Antarctic boundary layer,” Atmos. Sci. Lett. 4 (1–4), 1–14 (2003).

    Article  Google Scholar 

  19. P. G. Saffman, Vortex Dynamics. Cambridge Monographs on Mechanics (Cambridge University Press, Cambridge 1992).

    Google Scholar 

  20. E. A. Novikov, “Vortex flow,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8 (7), 759–762 (1972).

    Google Scholar 

  21. B. M. Koprov, V. V. Kalugin, and N. S. Thieme, “Turbulent flow of a vortex,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 30 (1), 13–17 (1994).

    Google Scholar 

  22. V. M. Bovsheverov, A. S. Gurvich, A. N. Kochetkov, and S. O. Lomadze, “Measurement of the frequency spectrum of small-scale circulation of velocity in a turbulent flow,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 7 (4), 371–376 (1971).

    Google Scholar 

  23. B. M. Koprov, V. M. Koprov, V. M. Ponomarev, and O. G. Chkhetiani, “Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer,” Dokl. Phys. 50 (8), 419–422 (2005).

    Article  Google Scholar 

  24. B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity and potential vorticity in surface turbulence,” Izv., Atmos. Oceanic Phys. 51, 565–575 (2015).

    Article  Google Scholar 

  25. B. M. Koprov, V. M. Koprov, O. A. Solenaya, O. G. Chkhetiani, and E. A. Shishov, “Technique and results of measurements of turbulent helicity in the stratified surface layer,” Izv., Atmos. Ocean. Phys. 54, 446–455 (2018).

    Article  Google Scholar 

  26. V. V. Kurgansky, A. Montecines, V. Villagran, and S. M. Metzger, “Micrometeorological conditions for dust-devil occurrence in the Atacama Desert,” Boundary-Layer Meteorol., 138, 285–298 (2011).

    Article  Google Scholar 

  27. M. D. Millionshchikov, “On some problems of turbulence and turbulent heat and mass transfer”, in Turbulent Flows. Proc. All-Union Seminar, Ed. by V. V. Struminskii (Nauka, Moscow, 1974) [in Russian], pp. 3–18.

  28. L. G. Elagina, B. M. Koprov, and D. F. Timanovskii, “Some characteristics of the atmospheric surface layer over snow,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 14 (9), 926–931 (1978).

    Google Scholar 

  29. N. F. Elansky, B. M. Koprov, D. Yu. Sokolov, and N. Thieme, “Turbulent flow of ozone over steppe,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 31 (1), 109–114 (1995).

    Google Scholar 

  30. F. V. Dolzhansky, Basics of Geophysical Hydrodynamics (Fizmatgiz, Moscow, 2011) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Koprov.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koprov, B.M., Koprov, V.M. Role of Vortex Structures in the Surface Layer in the Radiation Interaction between Underlying Surface and Air. Izv. Atmos. Ocean. Phys. 56, 414–421 (2020). https://doi.org/10.1134/S0001433820040052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820040052

Keywords:

Navigation