Skip to main content
Log in

Destruction of Atmospheric Ozone in Ox, HOx, NOx, ClOx, BrOx, and IOx Catalytic Cycles

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Data on the relative contribution of the Ox, HOx, NOx, ClOx, BrOx, and IOx catalytic cycles to atmospheric ozone destruction are given for June and January 2000 at a latitude of 50° N in the height range of 0–50 km. The height profiles of the components of the above families have been calculated using the SOCRATES two-dimensional interactive model and the one-dimensional photochemical model developed at the Tal’rose Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences. The initial data for the calculations are taken to be the atmospheric content of greenhouse gases according to the Intergovernmental Panel on Climate Change RCP 4.5 scenario for 2000. The ozone destruction rate is calculated using an algorithm proposed earlier by the author to determine the rate of the limiting stage of the catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. J. Hampson “Chemical Instability of the Stratosphere,” paper presented at the International Association of Meteorology and Atmospheric Physics (IUGG) Symposium on Atmospheric Radiation (1964), Leningrad, Soviet Union.

REFERENCES

  1. I. K. Larin, Chemical Physics of the Ozone Layer (GEOS, Moscow, 2013) [in Russian], p. 159.

    Google Scholar 

  2. I. K. Larin, “Unresolved problems in the chemistry of the middle atmosphere,” Russ. J. Phys. Chem. B 12, 791–796 (2018).

    Article  Google Scholar 

  3. I. K. Larin and M. L. Kuskov, “Mechanisms of the stratospheric ozone depletion: II. Chain length and the rate of ozone depletion in the main stratospheric cycles,” Russ. J. Phys. Chem. B 7, 580–588 (2013).

    Article  Google Scholar 

  4. I. K. Larin, “Contribution from the Ox, HOx, NOx, ClOx, and BrOx cycles to the stratospheric ozone depletion in the XXI century,” Russ. J. Phys. Chem. B 11 (1), 189–194 (2017).

    Article  Google Scholar 

  5. SOCRATES. http://acd.ucar.edu/models/SOCRATES/

  6. Representative Concentration Pathways Database. http:// tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage& page=welcome

  7. I. K. Larin, Chemical Physics of the Ozone Layer (Russ. Akad. Nauk, Moscow, 2018) [in Russian], p. 208.

    Google Scholar 

  8. A. P. Purmal’, The A, B, C, … of Chemical Kinetics (IKTs Akademkniga, Moscow, 2004) [in Russian], p. 277.

  9. D. J. Jacob, Introduction to Atmospheric Chemistry (Princeton Univ. Press, Princeton, 1999), p. 259.

    Google Scholar 

  10. G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed. (Springer, Montreal, Canada, 2005), p. 644.

    Book  Google Scholar 

  11. S. Chapman, “On ozone and atomic oxygen in the upper atmosphere,” Philos. Mag. 10, 369–383 (1930).

    Article  Google Scholar 

  12. P. J. Crutzen, “Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere,” J. Geophys. Res. 76, 7311–7327 (1971).

    Article  Google Scholar 

  13. V. N. Konashenok, “On the photochemical theory of ozone,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 4, 797–799 (1968).

    Google Scholar 

  14. G. P. Gushchin, Doctoral Dissertation in Mathematics and Physics (Main Geophys. Observ., Leningrad, 1968).

  15. H. S. Johnston, “Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust,” Science 173, 517–522 (1971).

    Article  Google Scholar 

  16. R. S. Stolarski and R. J. Cicerone, “Stratospheric chlorine: a possible sink for ozone,” Can. J. Chem. 52, 1610–1615 (1974).

    Article  Google Scholar 

  17. S. C. Wofsy and M. B. McElroy, “HO, NO, and ClO: their role in atmospheric photochemistry,” Can. J. Chem. 52, 1582–1591 (1974).

    Article  Google Scholar 

  18. S. C. Wofsy, M. B. McElroy, and Y. L. Yung, “The chemistry of atmospheric bromine,” Geophys. Rev. Lett. 2, 215–218 (1975).

    Article  Google Scholar 

  19. Y. L. Yung, J. P. Pinto, R. T. Watson, and S. P. Sander, “Atmospheric bromine and ozone perturbations in the lower stratosphere,” J. Atmos. Sci. 37, 339–353 (1980).

    Article  Google Scholar 

  20. I. K. Larin and A. A. Ugarov, “On the increase of total ozone content in the atmosphere in 2000–2100,” Khim. Fiz. 18 (6), 21–25 (1999).

    Google Scholar 

  21. S. A. W. Gerstl, A. Zardecki, and H. L. Wiser, “Damaging radiation amplified by ozone depletions,” Nature 294 (5839), 352–354 (1981).

    Article  Google Scholar 

  22. W. L. Chameides and D. D. Davis, “Iodine: Its possible role in tropospheric photochemistry,” J. Geophys. Res. 85 (C12), 7383–7398 (1980).

    Article  Google Scholar 

  23. Y. Li, K. O. Patten, D. Youn, and D. J. Wuebbles, “Potential impacts of CF3I on ozone as a replacement for CF3Br in aircraft applications,” Atmos. Chem. Phys. 6 (12), 4559–4568 (2006).

    Article  Google Scholar 

  24. A. Saiz-Lopez, R. P. Fernandez, C. Ordóñez, D. E. Kinnison, J. C. Gómez Martin, J.-F. Lamarque, and S. Tilmes, “Iodine chemistry in the troposphere and its effect on ozone,” Atmos. Chem. Phys. 14, 13119–13143 (2014).

    Article  Google Scholar 

  25. C. A. Cuevas, N. Maffezzoli, J. P. Corella, A. Spolaor, P. Vallelonga, H. A. Kjær, M. Simonsen, M. Winstrup, B. Vinther, C. Horvat, R. D. Kinnison, J.-F. Lamarque, C. Barbante, and A. Saiz-Lopez, “Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century,” Nat. Commun. 9, 1452–1458 (2018).

    Article  Google Scholar 

  26. S. Solomon, R. R. Garcia, and A. R. Ravishankara, “On the role of iodine in ozone depletion,” J. Geophys. Res. 99, 20491–20499 (1994).

    Article  Google Scholar 

  27. L. J. Carpenter, “Iodine in the marine boundary layer,” Chem. Rev. 103 (12), 4953–4962 (2003).

    Article  Google Scholar 

  28. JPL Data Evaluation. https://jpldataeval.jpl.nasa.gov/

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-05-00080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Larin.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, I.K. Destruction of Atmospheric Ozone in Ox, HOx, NOx, ClOx, BrOx, and IOx Catalytic Cycles. Izv. Atmos. Ocean. Phys. 56, 165–172 (2020). https://doi.org/10.1134/S0001433820020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820020085

Keywords:

Navigation