Skip to main content
Log in

Estimates of Trends of Climatically Important Atmospheric Gases Near St. Petersburg

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Total column amounts (TCAs) of various climatically important atmospheric gases have been determined in Peterhof for the period between 2009 and 2018. These measurements were performed using a Bruker 125HR ground-based IR Fourier transform spectrometer, which registered the spectra of direct solar radiances. We estimated the trends for TCAs of 13 climatically important gases for the first time in Russia. For nine of them, these estimates are reliable. Trends of the main greenhouse gases, CO2, CH4, and N2O, determined with high accuracy (~0.02%), are positive and equal 0.52, 0.42, and 0.28% per year, respectively. The comparison of methane trend estimates with earlier ones demonstrates that in recent years the trend of methane TCAs near St. Petersburg has been increased. Moreover, we observe the negative trends in TCAs of tropospheric ozone (–0.75 ± 0.56% per year), CFC-11 and CFC-12 (~–0.5–1.0% per year), and ClONO2 (–2% per year). Trends for HF and HCFC-22 TCAs near St. Petersburg are positive, providing ~1–2% per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. IPCC, 2013: Summary for Policymakers, in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, (IPCC, Cambridge–New York, 2013).

    Google Scholar 

  2. WMO, 2014: Global Ozone Research and Monitoring Project-Report No. 55. www.esrl.noaa.gov/csd/assessments/ozone/.

  3. V. I. Dianov-Klokov, “Spectroscopic studies of the gas admixture background content in the atmosphere,” Vestn. AN SSSR 4 (1), 33 (1980).

    Google Scholar 

  4. A. V. Mironenkov, A. V. Poberovsky and Yu. M. Timofeev, “Spectroscopic neasurements of the total methane content in the atmosphere over St. Petersburg,” Izv. AN SSSR, Fiz. Atmosf. Okeana 32, 471 (1996).

    Google Scholar 

  5. Y. Timofeyev, Y. Virolainen, M. Makarova, et al., “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc., 323, 2–14 (2016).

    Article  Google Scholar 

  6. M. V. Makarova, A. V. Poberovsky, F. Hase, et al., “Determination of the characteristic of the ground-based IR spectral instrumentation in applications of environmental monitoring of the atmosphere,” J. Appl. Spectrosc., 83, 429–436 (2016).

    Article  Google Scholar 

  7. F. Hase, J. W. Hannigan, M. T. Coffey, et al., “Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87, 25–52 (2004).

    Article  Google Scholar 

  8. Yu. M. Timofeyev, Studies of the Earth’s Atmosphere by the Method of Transparency (Nauka, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  9. Y. M. Timofeyev, I. A. Berezin, Y. A. Virolainen, et al., “Spatial–temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements,” Izv. Atmos. Ocean. Phys. 55, 59–64 (2019). https://doi.org/10.1134/S0001433819010109

    Article  Google Scholar 

  10. M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Annual cycle and long-term trend of the methane total column in the atmosphere over the St. Petersburg region,” Izv., Atmos. Ocean. Phys. 51, 431–438 (2015).

    Article  Google Scholar 

  11. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovsky, et al., “Evaluation of ozone content in different atmospheric layers using groundbased Fourier transform spectrometry,” Izv. Atmos. Ocean. Phys. 51 (2), 167–176 (2015).

    Article  Google Scholar 

  12. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovskii, et al., “Chlorine nitrate in the atmosphere over St. Petersburg,” Izv., Atmos. Ocean. Phys. 51 (1), 49–56 (2015).

    Article  Google Scholar 

  13. A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, et al., “Ground-based measurements of the total column of freons in the atmosphere near St. Petersburg (2009–2017),” Izv., Atmos. Ocean. Phys. 54 (5), 487–494 (2018).

    Article  Google Scholar 

  14. Yu. M. Timofeev, A. V. Polyakov, and A. V. Poberovsky, “HCl content has ceased to increase in the atmosphere of the Northern Hemisphere,” Dokl. Earth Sci. 470, 994–996 (2016).

    Article  Google Scholar 

  15. J. Angelbratt, J. Mellqvist, T. Blumenstock, et al., “A new method to detect long term trends of methane (CH4) and nitrous oxide (N2O) total columns measured within the NDACC ground-based high resolution solar FTIR network,” Atmos. Chem. Phys. 11, 6167–6183 (2011).

    Article  Google Scholar 

  16. E. Dlugokencky and P. Tans, Trends in Atmospheric Carbon Dioxide. www.esrl.noaa.gov/gmd/ccgg/trends/).

  17. V. N. Aref’ev, N. E. Kamenogradskii, F. V. Kashin, and A. V. Shilkin, “Background component of carbon dioxide concentration in the near-surface air,” Izv., Atmos. Ocean. Phys., 50 (6), 576–582 (2014)

    Article  Google Scholar 

  18. S. Ch. Foka, M. V. Makarova, A. V. Poberovsky, et al., “Temporal variation of CO2 and CH4 concentrations in a suburb of St. Petersburg (Peterhof),” Atmos. Oceanic Opt. 2019 (in press).

  19. Review of in situ observations of the GSA network in 2017, in Byull. VMO po Parnik. Gazam, No. 14, 2–6 (2018).

  20. Y. Ye, L. Ries, H. Petermeier, et al., “On the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 at Mount Zugspitze, Germany, during 1981–2016,” Atmos. Chem. Phys. 19, 999–1012 (2019).

    Article  Google Scholar 

  21. R. Kivi and P. Heikkinen, “Fourier transform spectrometer measurements of column CO2 at Sodankylä, Finland,” Geosci. Instrum. Methods Data Syst. 5 (2), 271–279 (2016).

    Article  Google Scholar 

  22. E. G. Nisbet, E. J. Dlugokencky, and P. Bousquet, “Methane on the rise – again,” Science 343, 493–495 (2014).

    Article  Google Scholar 

  23. E. J. Dlugokencky, S. Houweling, L. Bruhwiler, et al., “Atmospheric methane levels off: Temporary pause or a new steady-state?,” Geophys. Res. Lett. 30, 1992–1995 (2003). https://doi.org/10.1029/2003GL018126

    Article  Google Scholar 

  24. W. Bader, B. Bovy, S. Convey, et al., “The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005,” Atmos. Chem. Phys. 17, 2255–2277 (2017).

    Article  Google Scholar 

  25. R. Sussmann, F. Forster, M. Rettinger, and P. Bousquet, “Renewed methane increase for five years (2007–2011) observed by solar FTIR spectrometry,” Atmos. Chem. Phys. 12, 4885–4891 (2012).

    Article  Google Scholar 

  26. P. Forster, V. Ramaswamy, P. Artaxo, et al., “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller (Cambridge University Press, Cambridge, 2007), pp. 129–234.

    Google Scholar 

  27. M. Zhou, B. Langerock, C. Vigouroux, et al., “Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements,” Atmos. Chem. Phys. 18, 13881–13901 (2018).

    Article  Google Scholar 

  28. T. Ishijima, T. Nakazawa, and S. Aoki, “Variations of atmospheric nitrous oxide concentration in the northern and western Pacific,” Tellus 61B, 408–415 (2009).

    Article  Google Scholar 

  29. M. Zhou, B. Langerock, K. C. Wells, et al., “An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model,” Atmos. Meas. Tech. 12, 1393–1408 (2019).

    Article  Google Scholar 

  30. M. Weber, M. Coldewey-Egbers, V. E. Fioletov, et al., “Total ozone trends from 1979 to 2016 derived from five merged observational datasets—the emergence into ozone recovery,” Atmos. Chem. Phys. 18, 2097–2117 (2018).

    Article  Google Scholar 

  31. C. Vigouroux, M. De Maziere, P. Demoulin, et al., “Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations,” Atmos. Chem. Phys. 8, 6865–6886 (2008).

    Article  Google Scholar 

  32. A. Gaudel, O. R. Cooper, G. Ancellet, et al., “Tropospheric ozone assessment report: Present-day ozone distribution and trends relevant to climate and model evaluation,” Elem. Sci. Anth. 6 (2018). https://doi.org/10.1525/elementa.291

  33. C. Wespes, D. Hurtmans, C. Clerbaux, et al., “Decrease in tropospheric O3 levels in the Northern Hemisphere observed by IASI,” Atmos. Chem. Phys. 18, 6867–6885 (2018).

    Article  Google Scholar 

  34. S. Montzka and S. Reimann, “Ozone-depleting substances (ODSs) and related chemicals. Scientific Assessment of Ozone Depletion: 2010,” in Rep. 52. Chap. 1. Global Ozone Res. and Monit. Proj. (World Meteorol. Organ., Geneva, 2011), pp. 1–112.

  35. A. T. Brown, M. P. Chipperfield, C. Boone, et al., “Trends in atmospheric halogen containing gases since 2004,” J. Quant. Spectrosc. Radiat. Transfer 112, 2552–2566 (2011).

    Article  Google Scholar 

  36. M. Zhou, C. Vigouroux, B. Langerock, et al., “CFC-11, CFC-12 and HCFC-22 ground-based remote sensing FTIR measurements at Réunion Island and comparisons with MIPAS/ENVISAT data,” Atmos. Meas. Tech. 9, 5621–5636 (2016).

    Article  Google Scholar 

  37. S. Kellmann, T. von Clarmann, G. P. Stiller, et al., “Global CFC-11 (CCl3F) and CFC-12 (CCl2F2) measurements with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS): retrieval, climatologies and trends,” Atmos. Chem. Phys. 12, 11857–11875 (2012).

    Article  Google Scholar 

  38. R. Kohlhepp, S. Barthlott, T. Blumenstock, et al., “Trends of HCl, ClONO2, and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations,” Atmos. Chem. Phys. 11, 4669–4677 (2011).

    Article  Google Scholar 

  39. R. Kohlhepp, R. Ruhnke, M. P. Chipperfield, et al., “Observed and simulated time evolution of HCl, Cl-ONO2, and HF total column abundances,” Atmos. Chem. Phys. 12, 3527–3556 (2012).

    Article  Google Scholar 

  40. F. Hendrick, E. Mahieu, G. E. Bodeker, et al., “Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations,” Atmos. Chem. Phys. 12, 8851–8864 (2012).

    Article  Google Scholar 

  41. R. J. Dirksen, K. F. Boersma, H. J. Eskes, et al., “Evaluation of stratospheric NO2 retrieved from the ozone monitoring instrument: intercomparison, diurnal cycle, and trending,” J. Geophys. Res. 116, D08305 (2011). https://doi.org/10.1029/2010JD014943

    Article  Google Scholar 

  42. E. Mahieu, M. P. Chipperfield, J. Notholt, et al., “Recent northern hemisphere stratospheric HCl increase due to atmospheric circulation changes,” Nature 515, 104–107 (2014).

    Article  Google Scholar 

Download references

Funding

These studies were performed using equipment of the Geomodel resource center at St. Petersburg State University and supported in part by the Russian Foundation for Basic Research, grant no. 18-05-00426. The discussion of the method for interpreting spectroscopic measurements was supported by a grant from St. Petersburg State University COLLAB2018 no. 28883514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Timofeev.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, Y.M., Polyakov, A.V., Virolainen, Y.A. et al. Estimates of Trends of Climatically Important Atmospheric Gases Near St. Petersburg. Izv. Atmos. Ocean. Phys. 56, 79–84 (2020). https://doi.org/10.1134/S0001433820010119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820010119

Keywords:

Navigation