Skip to main content
Log in

Similarity Model of Spatial Spectra of Random Anisoscale Inhomogeneities of Atmosphere Permittivity and Its Application to Wave Propagation Problems

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The similarity model of anisoscale fluctuations of permittivity in a turbulent atmosphere is suggested. Correlation properties of fluctuations in different spatial directions are shown to be similar and to differ only in the direction-dependent scaling factor. The power-law similarity model of fluctuations is proposed. It is shown that in the geometric optics approximation the correlation properties of the phase of plane (and spherical) wave are similar and differ only in the scaling factor, depending on wave-propagation directions and the base (the coordinate difference at probe points). Correlation characteristics (dispersion, coefficient of anisomery, and a form of correlation coefficient) are calculated for a number of typical parameters of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. This situation takes place, e.g., in the case of Kolmogorov locally homogeneous isotropic turbulence with the infinite external scale, where the spectrum \({{\Phi }_{\varepsilon }}({\mathbf{\varkappa }}) \sim {{\kappa }^{{ - 11/3}}}\).

  2. Here we are faced with the problem of dividing the refractive index field into the regular and fluctuation components. Large inhomogeneities lead to slow changes in signal parameters, which often are attributable to regular distortions.

REFERENCES

  1. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Nauka, Moscow, 1967; US Dept. Commerce, 1971).

  2. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation (Elsevier Sci., Amsterdam, New York, 1975; Mir, Moscow, 1978).

  3. A. S. Gurvich and I. P. Chunchuzov, “Parameters of the fine density structure in the stratosphere obtained from spacecraft observations of stellar scintillations,” J. Geophys. Res. 108(D5), 4166 (2003). doihttps://doi.org/10.1029/2002JD002281

    Article  Google Scholar 

  4. Yu. A. Kravtsov, Z. I. Feizulin, and A. G. Vinogradov, Passage of Radiowaves through the Earth’s Atmosphere (Radio i svyaz’, Moscow, 1983) [in Russian].

  5. Ch. Garret and W. Munk, “Space-time scales of internal waves: a progress report,” J. Geophys. Res. 80, 291–297 (1975).

    Article  Google Scholar 

  6. I. P. Chunchuzov, “On the high wavenumber form of the Eulerian internal wave spectrum in the atmosphere,” J. Atmos. Sci. 59, 1753–1772 (2002).

    Article  Google Scholar 

  7. A. S. Gurvich and I. P. Chunchuzov, “Model of the three-dimensional spectrum of anisotropic temperature irregularities in a stably stratified atmosphere,” Izv., Atmos. Ocean. Phys, 44, 567–582 (2008).

    Article  Google Scholar 

  8. V. Kan, M. E. Gorbunov, and V. F. Sofieva, “Fluctuations of radio occultation signals in sounding the Earth’s atmosphere,” Atmos. Meas. Tech 11, 663–680 (2018). https://doi.org/10.5194/amt-11-663-2018

    Article  Google Scholar 

  9. E. M. Dewan, “Saturated cascade similitude theory of gravity wave spectra,” J. Geophys. Res. D 102, 29799–29817 (1997).

    Article  Google Scholar 

  10. E. Lindborg, “The energy cascade in a strongly stratified fluid,” J. Fluid Mech. 550, 207–242 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank a reviewer for helpful and constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Vinogradov or A. N. Teokharov.

Additional information

Translated by M. Samokhina

Appendices

FORMULAS OF CORRELATION OF PERMITTIVITY FLUCTUATIONS

We show the explicit form of the correlation coefficient \(R_{\varepsilon }^{0}(p,n,\delta )\), defined in (3.4), for particular cases \(n = 0;1\) and spectra \(p = {{11} \mathord{\left/ {\vphantom {{11} 6}} \right. \kern-0em} 6};\)\(p = {5 \mathord{\left/ {\vphantom {5 {2{\kern 1pt} }}} \right. \kern-0em} {2{\kern 1pt} }}{\kern 1pt} :\)

$$R_{\varepsilon }^{0}(p,0,\delta ) = \frac{{2{{{\left| \delta \right|}}^{{p - 3/2}}}{{K}_{{p - 3/2}}}(\left| \delta \right|)}}{{{{2}^{{p - 3/2}}}\Gamma (p - {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2})}};$$
$$R_{\varepsilon }^{0}({{11} \mathord{\left/ {\vphantom {{11} 6}} \right. \kern-0em} 6},1,\delta ) = \frac{{{{2}^{{2/3}}}}}{{3\Gamma ({1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3})}}{{\left| \delta \right|}^{{1/3}}}\left( {3{{K}_{{1/3}}}(\left| \delta \right|) - \left| \delta \right|{{K}_{{2/3}}}(\left| \delta \right|)} \right);$$
$$R_{\varepsilon }^{0}({5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2},1,\delta ) = \frac{2}{9}\left( {5G_{{1,3}}^{{2,1}}\left( {\frac{{{{{\left| \delta \right|}}^{2}}}}{4}\left| \begin{gathered} {{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0em} 2} \hfill \\ 0,1,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2} \hfill \\ \end{gathered} \right.} \right) + {{{\left| \delta \right|}}^{2}}{{K}_{2}}(\left| \delta \right|)} \right),$$

\({{K}_{q}}(x)\) is the modified Bessel function and \(G_{{p,q}}^{{m,n}}\left( {z\left| \begin{gathered} {{a}_{1}},...,{{a}_{p}} \hfill \\ {{b}_{1}},...,{{b}_{q}} \hfill \\ \end{gathered} \right.} \right)\) is the Meijer’s G-function.

For coefficient (3.6), it is easy to derive the recurrent formula \({{C}_{0}}(p,n + 1)\) = \({{C}_{0}}(p,n){{(p + n)} \mathord{\left/ {\vphantom {{(p + n)} {(n + 1)}}} \right. \kern-0em} {(n + 1)}}\), allowing, e.g., it to be simplified significantly for integer \(n\):

$$\begin{gathered} {{C}_{0}}(p,n) = p(p + 1)(p + 2)...{{(p + n - 1)} \mathord{\left/ {\vphantom {{(p + n - 1)} n}} \right. \kern-0em} n}!; \\ {{C}_{0}}(p,0) = 1. \\ \end{gathered} $$

For integral (3.8), it is likewise easy to obtain recurrent formula \({{I}_{0}}(p,n,\lambda )\) = \([{{(1 - \lambda )}^{n}} + \)\({{n{{I}_{0}}(p,n - 1,\lambda )]} \mathord{\left/ {\vphantom {{n{{I}_{0}}(p,n - 1,\lambda )]} {(p + n - 1)}}} \right. \kern-0em} {(p + n - 1)}}\), which makes it possible, e.g., to significantly simplify this integral for integer \(n\):

$$\begin{gathered} {{I}_{0}}(p,0,\lambda ) = \frac{1}{{p - 1}};\,\,\,\,{{I}_{0}}(p,1,\lambda ) = \frac{1}{{p - 1}} - \frac{\lambda }{p}; \\ {{I}_{0}}(p,2,\lambda ) = \frac{1}{{p - 1}} - \frac{{2\lambda }}{p} + \frac{{{{\lambda }^{2}}}}{{p + 1}}; \\ {{I}_{0}}(p,3,\lambda ) = \frac{1}{{p - 1}} - \frac{{3\lambda }}{p} + \frac{{3{{\lambda }^{2}}}}{{p + 1}} - \frac{{{{\lambda }^{3}}}}{{p + 2}};... \\ \end{gathered} $$

Taking into account that \(0 < \lambda (k) \leqslant 1,\) we find the estimate \(C_{0}^{{ - 1}}(p,n) \leqslant (p - 1){{I}_{0}}(p,n,\lambda ) \leqslant 1.\)

CALCULATION OF THE COEFFICIENT OF SCALABILITY OF THE WAVE EIKONAL ANISOMERY

To calculate the scalability coefficient \(C({{{\mathbf{e}}}_{s}},{{{\mathbf{e}}}_{ \bot }}) = \)\(C({{\theta }_{s}},{{\varphi }_{s}},{{\psi }_{\rho }})\) (here \(({{\theta }_{s}},{{\varphi }_{s}})\) are the angles of vector \({{{\mathbf{e}}}_{s}}\) in the spherical coordinate system and \({{\psi }_{\rho }}\) is the polar angle of vector \({{{\mathbf{e}}}_{ \bot }}\) in the polar coordinate system on the plane \({{\mathbb{S}}_{s}} \bot {{{\mathbf{e}}}_{s}}\)), we express components of vectors \({{{\mathbf{e}}}_{s}},{{{\mathbf{e}}}_{ \bot }}\) (as well as \({{{\mathbf{E}}}_{s}},{{{\mathbf{E}}}_{ \bot }}\)) in the initial Cartesian coordinate system \((x,y,z)\):

$$\begin{gathered} {{{\mathbf{e}}}_{s}}({{\theta }_{s}},{{\varphi }_{s}}) = ({{\begin{array}{*{20}{c}} {\sin {{\theta }_{s}}\cos {{\varphi }_{s}},}&{\sin {{\theta }_{s}}\sin {{\varphi }_{s}},}&{\cos \theta } \end{array}}_{s}}), \\ {{{\mathbf{E}}}_{s}}({{\theta }_{s}},{{\varphi }_{s}}) \\ = (\begin{array}{*{20}{c}} {{{\beta }_{x}}\sin {{\theta }_{s}}\cos {{\varphi }_{s}},}&{{{\beta }_{y}}\sin {{\theta }_{s}}\sin {{\varphi }_{s}},}&{{{\beta }_{z}}\cos {{\theta }_{s}}} \end{array}), \\ \end{gathered} $$
$$\begin{gathered} {{{\mathbf{e}}}_{ \bot }}({{\theta }_{s}},{{\varphi }_{s}},{{\psi }_{\rho }}) \equiv {{\Delta {{{\mathbf{r}}}_{ \bot }}} \mathord{\left/ {\vphantom {{\Delta {{{\mathbf{r}}}_{ \bot }}} {\Delta {{r}_{ \bot }}}}} \right. \kern-0em} {\Delta {{r}_{ \bot }}}} = \cos {{\psi }_{\rho }}{{{\mathbf{e}}}_{\theta }} + \sin {{\psi }_{\rho }}{{{\mathbf{e}}}_{\varphi }} \\ = \left( \begin{gathered} \cos {{\psi }_{\rho }}\cos {{\theta }_{s}}\cos {{\varphi }_{s}} - \sin {{\psi }_{\rho }}\sin {{\varphi }_{s}} \hfill \\ \cos {{\psi }_{\rho }}\cos {{\theta }_{s}}\sin {{\varphi }_{s}} + \sin {{\psi }_{\rho }}\cos {{\varphi }_{s}} \hfill \\ - \cos {{\psi }_{\rho }}\sin {{\theta }_{s}} \hfill \\ \end{gathered} \right), \\ {{{\mathbf{E}}}_{ \bot }}({{\theta }_{s}},{{\varphi }_{s}},{{\psi }_{\rho }}) = ({{\beta }_{x}}{{e}_{{ \bot x}}},{{\beta }_{y}}{{e}_{{ \bot y}}},{{\beta }_{z}}{{e}_{{ \bot z}}}) \\ = \left( {\begin{array}{*{20}{c}} {{{\beta }_{x}}(\cos {{\theta }_{s}}\cos {{\varphi }_{s}}\cos {{\psi }_{\rho }} - \sin {{\varphi }_{s}}\sin {{\psi }_{\rho }})} \\ {{{\beta }_{y}}(\cos {{\theta }_{s}}\sin {{\varphi }_{s}}\cos {{\psi }_{\rho }} + \cos {{\varphi }_{s}}\sin {{\psi }_{\rho }})} \\ {{{\beta }_{z}}( - \sin {{\theta }_{s}}\cos {{\psi }_{\rho }})} \end{array}} \right). \\ \end{gathered} $$

Here, \({{{\mathbf{e}}}_{\varphi }} = (\begin{array}{*{20}{c}} { - \sin {{\varphi }_{s}},}&{\cos {{\varphi }_{s}},}&0 \end{array}),\)\({{{\mathbf{e}}}_{s}} = (\sin {{\theta }_{s}}\cos {{\varphi }_{s}},\)\(\sin {{\theta }_{s}}\sin {{\varphi }_{s}},\cos {{\theta }_{s}})\) are the unit vectors on the plane \({{\mathbb{S}}_{s}} \bot {{{\mathbf{e}}}_{s}}\) in the local coordinate system. The calculation of cross product (4.10) yields

$$\begin{gathered} \left[ {{{{\mathbf{E}}}_{ \bot }}({{{\mathbf{e}}}_{s}},{{{\mathbf{e}}}_{ \bot }}) \times {{{\mathbf{E}}}_{s}}({{{\mathbf{e}}}_{s}})} \right] \\ = \left( {\begin{array}{*{20}{c}} {{{\beta }_{y}}{{\beta }_{z}}(\cos {{\theta }_{s}}\cos {{\varphi }_{s}}\sin {{\psi }_{\rho }} + \sin {{\varphi }_{s}}\cos {{\psi }_{\rho }})} \\ {{{\beta }_{x}}{{\beta }_{z}}(\cos {{\theta }_{s}}\sin {{\varphi }_{s}}\sin {{\psi }_{\rho }} - \cos {{\varphi }_{s}}\cos {{\psi }_{\rho }})} \\ {{{\beta }_{x}}{{\beta }_{y}}( - \sin {{\theta }_{s}}\sin {{\psi }_{\rho }})} \end{array}} \right). \\ \end{gathered} $$

To simplify calculations, we introduce for multipliers of horizontal anisomery on the plane \((x,y)\) the following designations:

$$\begin{gathered} {{{\rm B}}_{{xy}}} \equiv {{\beta }_{x}}{{\beta }_{y}},\,\,\,\,{{{\rm B}}_{z}} \equiv \beta _{z}^{2} = {1 \mathord{\left/ {\vphantom {1 {(\beta _{x}^{2}\beta _{y}^{2})}}} \right. \kern-0em} {(\beta _{x}^{2}\beta _{y}^{2})}} = {\rm B}_{{xy}}^{{ - 2}}, \\ \nu \equiv {{(\beta _{y}^{2} - \beta _{x}^{2})} \mathord{\left/ {\vphantom {{(\beta _{y}^{2} - \beta _{x}^{2})} {(2{{\beta }_{x}}{{\beta }_{y}})}}} \right. \kern-0em} {(2{{\beta }_{x}}{{\beta }_{y}})}}, \\ \end{gathered} $$

hence

$$\begin{gathered} \beta _{x}^{2} = {{{\rm B}}_{{xy}}}\left( {\sqrt {1 + {{\nu }^{2}}} - \nu } \right) = {{{\rm B}}_{{xy}}}\left( {q(\nu ) - \nu } \right), \\ \beta _{y}^{2} = {{{\rm B}}_{{xy}}}\left( {\sqrt {1 + {{\nu }^{2}}} + \nu } \right) = {{{\rm B}}_{{xy}}}\left( {q(\nu ) + \nu } \right), \\ q(\nu ) \equiv \sqrt {1 + {{\nu }^{2}}} = {{(\beta _{x}^{2} + \beta _{y}^{2})} \mathord{\left/ {\vphantom {{(\beta _{x}^{2} + \beta _{y}^{2})} {(2{{\beta }_{x}}{{\beta }_{y}})}}} \right. \kern-0em} {(2{{\beta }_{x}}{{\beta }_{y}})}};\,\,\,\left( {\nu \equiv \sqrt {{{q}^{2}} - 1} } \right), \\ \end{gathered} $$

and the horizontal anisomery multipliers depending on the polar angle \({{\varphi }_{s}}\)

$$\begin{gathered} {{{\rm B}}_{ \bot }}({{\varphi }_{s}}) \equiv \beta _{x}^{2}{{\cos }^{2}}{{\varphi }_{s}} + \beta _{y}^{2}{{\sin }^{2}}{{\varphi }_{s}} \\ = {{{\rm B}}_{{xy}}}[q(\nu ) - \nu \cos (2{{\varphi }_{s}})], \\ {{{\rm B}}_{\parallel }}({{\varphi }_{s}}) \equiv \beta _{x}^{2}{{\sin }^{2}}{{\varphi }_{s}} + \beta _{y}^{2}{{\cos }^{2}}{{\varphi }_{s}} \\ = {{{\rm B}}_{{xy}}}[q(\nu ) + \nu \cos (2{{\varphi }_{s}})], \\ {{{\rm B}}_{\Delta }}({{\varphi }_{s}}) \equiv (\beta _{y}^{2} - \beta _{x}^{2})\sin {{\varphi }_{s}}\cos {{\varphi }_{s}} = {{{\rm B}}_{{xy}}}\nu \sin (2{{\varphi }_{s}}). \\ \end{gathered} $$

For the wavenumber in the direction of \({{{\mathbf{e}}}_{s}}\), we have

$${{\beta }_{0}}^{2}({{{\mathbf{e}}}_{s}}) = {{{\rm B}}_{ \bot }}({{\varphi }_{s}}){{\sin }^{2}}{{\theta }_{s}} + {{{\rm B}}_{z}}{{\cos }^{2}}{{\theta }_{s}}.$$

After calculations and simplification, we finally find an expression for the scalability coefficient of spatial correlation

$${{Q}^{2}}({{\theta }_{s}},{{\varphi }_{s}},{{\psi }_{\rho }}) \equiv {{C}^{2}}({{\theta }_{s}},{{\varphi }_{s}},{{\psi }_{\rho }}){{\beta }_{0}}^{2}({{\theta }_{s}},{{\varphi }_{s}}).$$

As a function of parameter \({{\psi }_{\rho }}\), this is an ellipse on the plane \({{\mathbb{S}}_{s}} \bot {{{\mathbf{e}}}_{s}},\) the parameters of which—the semiaxes and angle of semiaxes inclination \({{\psi }_{0}}\)—can be calculated as functions of coordinates of the wave-incidence vector \({{{\mathbf{e}}}_{s}}\) by reducing the quadratic form to a sum of squares by a turn through this angle:

$$\begin{gathered} {{Q}^{2}}({{{\mathbf{e}}}_{s}},{{\psi }_{\rho }}) = {{A}_{1}}({{{\mathbf{e}}}_{s}}){{\cos }^{2}}{{\psi }_{\rho }} + {{A}_{2}}({{{\mathbf{e}}}_{s}}){{\sin }^{2}}{{\psi }_{\rho }} \\ + \,\,2D({{{\mathbf{e}}}_{s}})\sin {{\psi }_{\rho }}\cos {{\psi }_{\rho }}. \\ \end{gathered} $$

Here,

$$\begin{gathered} {{A}_{1}}({{{\mathbf{e}}}_{s}}) = {{{\rm B}}_{z}}{{{\rm B}}_{ \bot }}({{\varphi }_{s}}), \\ {{A}_{2}}({{{\mathbf{e}}}_{s}}) = {{{\rm B}}_{z}}[{{{\rm B}}_{\parallel }}({{\varphi }_{s}}){{\cos }^{2}}{{\theta }_{s}} + {\rm B}_{{xy}}^{4}{{\sin }^{2}}{{\theta }_{s}}], \\ D({{{\mathbf{e}}}_{s}}) = {{{\rm B}}_{z}}{{{\rm B}}_{\Delta }}({{\varphi }_{s}})\cos {{\theta }_{s}}. \\ \end{gathered} $$

Determining the parameters \(M({{{\mathbf{e}}}_{s}}) \geqslant 0\) and \({{\psi }_{0}}\) from the relations

$$\begin{gathered} {{A}_{1}}({{{\mathbf{e}}}_{s}}) - {{A}_{2}}({{{\mathbf{e}}}_{s}}) = M({{{\mathbf{e}}}_{s}})\cos 2{{\psi }_{0}}, \\ 2D({{{\mathbf{e}}}_{s}}) = M({{{\mathbf{e}}}_{s}})\sin 2{{\psi }_{0}}, \\ {{M}^{2}}({{{\mathbf{e}}}_{s}}) = {{[{{A}_{1}}({{{\mathbf{e}}}_{s}}) - {{A}_{2}}({{{\mathbf{e}}}_{s}})]}^{2}} + 4{{D}^{2}}({{{\mathbf{e}}}_{s}}), \\ \end{gathered} $$

we derive

$$\begin{gathered} 2{{Q}^{2}}({{{\mathbf{e}}}_{s}},{{\psi }_{\rho }}) = {{A}_{1}}({{{\mathbf{e}}}_{s}}) + {{A}_{2}}({{{\mathbf{e}}}_{s}}) \\ + \,\,M({{{\mathbf{e}}}_{s}})\cos (2{{\psi }_{\rho }} - 2{{\psi }_{0}}) \\ = ({{A}_{1}} + {{A}_{2}} + M){{\cos }^{2}}({{\psi }_{\rho }} - {{\psi }_{0}}) \\ + \,\,({{A}_{1}} + {{A}_{2}} - M){{\sin }^{2}}({{\psi }_{\rho }} - {{\psi }_{0}}). \\ \end{gathered} $$

From here it can be seen that

$$\begin{gathered} Q_{{\max }}^{2}({{{\mathbf{e}}}_{s}}) = \mathop {\max }\limits_{{{\psi }_{\rho }}} \{ {{Q}^{2}}({{{\mathbf{e}}}_{s}},{{\psi }_{\rho }})\} \\ = [{{A}_{1}}({{{\mathbf{e}}}_{s}}) + {{A}_{2}}({{{\mathbf{e}}}_{s}}) + {{M({{{\mathbf{e}}}_{s}})]} \mathord{\left/ {\vphantom {{M({{{\mathbf{e}}}_{s}})]} 2}} \right. \kern-0em} 2} \\ {\text{with}}\,\,\,\,{{\psi }_{\rho }} = {{\psi }_{0}} + \pi n, \\ \end{gathered} $$
$$\begin{gathered} Q_{{\min }}^{2}({{{\mathbf{e}}}_{s}}) = \mathop {\min }\limits_{{{\psi }_{\rho }}} \{ {{Q}^{2}}({{{\mathbf{e}}}_{s}},{{\psi }_{\rho }})\} \\ = [{{A}_{1}}({{{\mathbf{e}}}_{s}}) + {{A}_{2}}({{{\mathbf{e}}}_{s}}) - {{M({{{\mathbf{e}}}_{s}})]} \mathord{\left/ {\vphantom {{M({{{\mathbf{e}}}_{s}})]} 2}} \right. \kern-0em} 2} \\ {\text{with}}\,\,\,\,{{\psi }_{\rho }} = {{\psi }_{0}} + \pi n + {\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0em} 2}, \\ \end{gathered} $$
$${{C}_{{\max ,\min }}}({{{\mathbf{e}}}_{s}}) = {{{{Q}_{{\max ,\min }}}({{{\mathbf{e}}}_{s}})} \mathord{\left/ {\vphantom {{{{Q}_{{\max ,\min }}}({{{\mathbf{e}}}_{s}})} {{{\beta }_{0}}({{{\mathbf{e}}}_{s}})}}} \right. \kern-0em} {{{\beta }_{0}}({{{\mathbf{e}}}_{s}})}}.$$

FORMULAS FOR CORRELATION COEFFICIENT OF WAVE EIKONAL FLUCTUATIONS FOR THE POWER-LAW SIMILARITY MODEL

Substituting power-law similarity model (3.1) into (4.6), we derive the expression for the “normalized” correlation coefficient of plane wave eikonal:

$$\begin{gathered} {{R}_{{{\text{iso}}}}}(p,n,x) = \frac{{\int\limits_0^\infty {kdk\Phi _{\varepsilon }^{{\text{0}}}({{k}^{2}}){{J}_{0}}(xk)} }}{{\int\limits_0^\infty {kdk\Phi _{\varepsilon }^{{\text{0}}}({{k}^{2}})} }} \\ = \frac{{2\Gamma (p + n)}}{{\Gamma (n + 1)\Gamma (p - 1)}}\int\limits_0^\infty {\frac{{{{J}_{0}}(xk){{k}^{{2n + 1}}}}}{{{{{(1 + {{k}^{2}})}}^{{p + n}}}}}dk} . \\ \end{gathered} $$

We present the explicit form of the correlation coefficient of plane-wave eikonal in the case of the power-law model with parameter values of \(n = 0,\)\(n = 1\), \(p = {{11} \mathord{\left/ {\vphantom {{11} 6}} \right. \kern-0em} 6}\) (Kolmogorov’s locally homogeneous turbulence), and \(p = {5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}\) (ground stratified turbulence):

$$\begin{gathered} {{R}_{{{\text{iso}}}}}({5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2},0,x) = (1 + x)\exp ( - x); \\ {{R}_{{{\text{iso}}}}}({5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2},1,x) = (1 + x - 0.5{{x}^{2}})\exp ( - x); \\ {{R}_{{{\text{iso}}}}}({{11} \mathord{\left/ {\vphantom {{11} 6}} \right. \kern-0em} 6},0,x) = [{{{{2}^{{1/6}}}} \mathord{\left/ {\vphantom {{{{2}^{{1/6}}}} \Gamma }} \right. \kern-0em} \Gamma }({5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6})]{{x}^{{5/6}}}{{K}_{{5/6}}}(x); \\ {{R}_{{{\text{iso}}}}}({{11} \mathord{\left/ {\vphantom {{11} 6}} \right. \kern-0em} 6},1,x) = [{\pi \mathord{\left/ {\vphantom {\pi {\Gamma ({5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6})}}} \right. \kern-0em} {\Gamma ({5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6})}}]{{({x \mathord{\left/ {\vphantom {x 2}} \right. \kern-0em} 2})}^{{5/6}}} \\ \times \,\,\{ [x({{I}_{{1/6}}}(x) - {{I}_{{11/6}}}(x)) + 2{{I}_{{ - 5/6}}}(x)] - ({{11} \mathord{\left/ {\vphantom {{11} 3}} \right. \kern-0em} 3}){{I}_{{5/6}}}(x)\} . \\ \end{gathered} $$

Here, \({{I}_{\nu }}\) is the Bessel function and \({{K}_{\nu }}\) is the modified Bessel function.

For the normalized correlation coefficient of the spherical wave eikonal \(R_{{{\text{iso}}}}^{{{\text{sph}}}}(p,n,x)\) = \(\int_0^1 {{{R}_{{{\text{iso}}}}}(p,n,x\xi )d\xi } \), we find the expression

$$\begin{gathered} R_{{{\text{iso}}}}^{{{\text{sph}}}}(p,n,x) = \frac{{\Gamma (p + n)}}{{\Gamma (n + 1)\Gamma (p - 1)}} \\ \times \,\,\,\int\limits_0^\infty {\left\{ {\pi {{{\rm H}}_{0}}(xk){{J}_{1}}(xk) + \left[ {2 - \pi {{{\rm H}}_{1}}(xk){{J}_{0}}(xk)} \right]} \right\}} \\ \times \,\,\frac{{{{k}^{{2n + 1}}}dk}}{{{{{(1 + {{k}^{2}})}}^{{p + n}}}}}. \\ \end{gathered} $$

Here, \({{{\rm H}}_{\nu }}\) is the Struve function and \({{J}_{\nu }}\) is the Bessel function.

We present the explicit form of the normalized correlation coefficient of spherical wave eikonal with the parameter values of \(n = 0,\,\,\,n = 1,\)\(p = {{11} \mathord{\left/ {\vphantom {{11} 6}} \right. \kern-0em} 6},\) and \(p = {5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}\):

$$\begin{gathered} R_{{{\text{iso}}}}^{{{\text{sph}}}}({5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2},0,x) = \frac{{2 - (2 + x){{e}^{{ - x}}}}}{x},\,\,\,\,R_{{{\text{iso}}}}^{{{\text{sph}}}}({5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2},1,x) = \frac{{2 + ({{x}^{2}} - 2){{e}^{{ - x}}}}}{{2x}}, \\ R_{{{\text{iso}}}}^{{{\text{sph}}}}\left( {\frac{{11}}{6},0,x} \right) = {}_{1}{{F}_{2}}\left( {\frac{1}{2};\frac{1}{6},\frac{3}{2};\frac{{{{x}^{2}}}}{4}} \right) + \frac{{3{{x}^{{5/3}}}\Gamma \left( { - \frac{5}{6}} \right){}_{1}{{F}_{2}}\left( {\frac{4}{3};\frac{{11}}{6},\frac{7}{3};\frac{{{{x}^{2}}}}{4}} \right)}}{{16 \times {{2}^{{2/3}}}\Gamma \left( {\frac{5}{6}} \right)}}, \\ R_{{{\text{iso}}}}^{{{\text{sph}}}}({{11} \mathord{\left/ {\vphantom {{11} 6}} \right. \kern-0em} 6},1,x) = \frac{{{{x}^{2}}}}{2}{}_{1}{{F}_{2}}\left( {\frac{3}{2};\frac{7}{6},\frac{5}{2};\frac{{{{x}^{2}}}}{4}} \right) + {}_{1}{{F}_{2}}\left( {\frac{1}{2};\frac{1}{6},\frac{3}{2};\frac{{{{x}^{2}}}}{4}} \right) \\ - \,\,\frac{{3\pi {{x}^{{5/3}}}\left[ {36{{x}^{2}}{}_{1}{{F}_{2}}\left( {\frac{7}{3};\frac{{17}}{6},\frac{{10}}{3};\frac{{{{x}^{2}}}}{4}} \right) + 847{}_{1}{{F}_{2}}\left( {\frac{4}{3};\frac{{11}}{6},\frac{7}{3};\frac{{{{x}^{2}}}}{4}} \right)} \right]}}{{3080 \times {{2}^{{2/3}}}\Gamma {{{\left( {\frac{5}{6}} \right)}}^{2}}}}. \\ \end{gathered} $$

Here, \({}_{1}{{F}_{2}}\) is the hypergeometric function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, A.G., Teokharov, A.N. Similarity Model of Spatial Spectra of Random Anisoscale Inhomogeneities of Atmosphere Permittivity and Its Application to Wave Propagation Problems. Izv. Atmos. Ocean. Phys. 56, 61–71 (2020). https://doi.org/10.1134/S0001433820010090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820010090

Keywords:

Navigation