Skip to main content
Log in

Mutual Impact of Mineral and Organic Components in Atmospheric Aerosol

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The effect of ammonium sulfate ((NH4)2SO4) on the condensation of low-volatile organic compounds in atmospheric aerosol is considered. Using the UNIFAC model, a physicochemical analysis has been conducted for the condensation of ISNP—a product of photochemical transformations of isoprene and α-pinene in the atmosphere. The variability of the mass content of ISNP, mass concentration of aerosol particles, and their phase state at different temperatures (T) and relative humidities (RH) have been calculated. Transition of the organic component into the aqueous phase of ammonium sulfate particles is observed only at certain combinations of T and RH. In comparison with condensation in the absence of ammonium sulfate, the ISNP content at given T and RH can be lower or higher. The results of calculations indicate that the newly forming particles of mixed composition are characterized by a higher hygroscopicity and a higher capacity to be converted into drops (miscible liquid phase) at an air humidity lower than for particles that contain only ammonium sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley & Sons, New York, 2006).

    Google Scholar 

  2. M. Kanakidou, J. H. Seinfeld, S. N. Pandis, et al., “Organic aerosol and global climate modeling: a review,” Atmos. Chem. Phys. 5 (4), 1053–1123 (2005).

    Article  Google Scholar 

  3. M. L. Smith, A. K. Bertram, and S. T. Martin, “Deliquescence, efflorescence, and phase miscibility of mixed particles of ammonium sulfate and isoprene-derived secondary organic material,” Atmos. Chem. Phys. 12 (19), 9613–9628 (2012).

    Article  Google Scholar 

  4. M. Jang, N. M. Czoschke, S. Lee, and R. M. Kamens, “Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions,” Science 298, 814–817 (2002).

    Article  Google Scholar 

  5. J. H. Kroll, A. W. H. Chan, N. L. Ng, R. C. Flagan, and J. H. Seinfeld, “Reactions of semivolatile organics and their effects on secondary organic aerosol formation,” Environ. Sci. Technol. 41 (10), 3545–3550 (2007).

    Article  Google Scholar 

  6. Z. F. Lu, J. M. Hao, H. Takekawa, L. H. Hu, and J. H. Li, “Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system,” Atmos. Environ. 43 (4), 897–904 (2009).

    Article  Google Scholar 

  7. H. Saathoff, K. H. Naumann, M. Schnaiter, W. Schock, O. Mohler, U. Schurath, E. Weingartner, M. Gysel, and U. Baltensperger, “Coating of soot and (NH4)2SO4 particles by ozonolysis products of alpha-pinene,” J. Aerosol Sci. 34 (10), 1297–1321 (2003).

    Article  Google Scholar 

  8. S. Takahama, R. K. Pathak, and S. N. Pandis, “Efflorescence transitions of ammonium sulfate particles coated with secondary organic aerosol,” Environ. Sci. Technol. 42 (7), 2289–2295 (2007).

    Article  Google Scholar 

  9. A. K. Bertram, S. T. Martin, S. J. Hanna, et al., “Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component,” Atmos. Chem. Phys. 11 (21), 10995–11006 (2011).

    Article  Google Scholar 

  10. M. L. Smith, M. Kuwata, and S. T. Martin, “Secondary organic material produced by the dark ozonolysis of alpha-pinene minimally affects the deliquescence and efflorescence of ammonium sulfate,” Aerosol Sci. Tech. 45 (2), 244–261 (2011).

    Article  Google Scholar 

  11. A. N. Ermakov, A. E. Aloyan, and V. O. Arutyunyan, “On the effect of air humidity on the formation of organic aerosol particles in the atmosphere,” Opt. Atmos. Okeana 32 (2), 141–146 (2019).

    Google Scholar 

  12. A. G. Gorshkov, I. I. Marinayte, V. A. Ovolkin, G. I. Baram, and T. V. Khodger, “Polycyclic aromatic hydrocarbons in the snow cover of the southern coast lake Baikal,” Atmos. Oceanic Opt. 11, 780–784 (1998).

    Google Scholar 

  13. V. F. Raputa, T. V. Khodzher, A. G. Gorshkov, and K. P. Kutsenogii, “Some patterns in the pollution of the environs of Irkutsk by polyaromatic hydrocarbons,” Opt. Atmos. Okeana 11 (6), 650–653 (1998).

    Google Scholar 

  14. K. B. He, F. M. Yang, Y. L. Ma, Q. Zhang, X. H. Yao, C. K. Chan, S. Cadle, T. Chan, and P. Mulawa, “The characteristics of PM2.5 in Beijing, China,” Atmos. Environ. 35 (29), 4959–4970 (2001).

    Article  Google Scholar 

  15. Y. Linuma, C. Miller, O. Bode, T. Gnauk, and H. Herrmann, “The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions,” Atmos. Environ. 41 (27), 5571–5583 (2007).

    Article  Google Scholar 

  16. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, “Dynamics of gas admixtures and aerosols in forest and peat fires,” Russ. J. Numer. Anal. Math. Modell 29 (2), 79–92 (2014).

    Article  Google Scholar 

  17. S. D. Brooks, M. E. Wise, M. Cushing, and M. A. Tolbert, “Deliquescence behavior of organic/ammonium sulfate aerosol,” Geophys. Rev. Lett. 29 (19), 23-1–23-4 (2002).

  18. H. K. Hansen, P. Rasmussen, A. Fredenslund, M. Schiller, and J. Gmehling, “Vapor-liquid equilibria by UNIFAC group-contribution. 5. Revision and extension,” Ind. Eng. Chem. Res. 30 (10), 2352–2355 (1991).

    Article  Google Scholar 

  19. Extended AIM Aerosol Thermodynamics Model, www.aim.env.uea.ac.uk/aim/aim.php.

  20. B. D. Amiro, J. B. Todd, B. M. Wotton, et al., “Direct carbon emissions from Canadian forest fires, 1959–1999,” Can. J. For. Res. 31 (3), 512–515 (2001).

    Article  Google Scholar 

  21. J. F. Pankow, “An absorption model of gas/particle partitioning of organic compounds in the atmosphere,” Atmos. Environ. 28 (2), 185–188 (1994).

    Article  Google Scholar 

  22. Th. Koop, K. S. Carslaw, and Th. Peter, “Thermodynamic stability and phase transitions of PSC particles,” Geophys. Rev. Lett. 24 (17), 2199–2202 (1997).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 18-05-00289, 19-05-50007, and 20-05-00044, as well as the state tasks of the Institute of Numerical Mathematics, Russian Academy of Sciences, and the Talrose Institute of Energetic Problems of Chemical Physics, Russian Academy of Sciences, project no. AAAA-A20-120011390097-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Yermakov or A. E. Aloyan.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.N., Aloyan, A.E. & Arutyunyan, V.O. Mutual Impact of Mineral and Organic Components in Atmospheric Aerosol. Izv. Atmos. Ocean. Phys. 56, 72–78 (2020). https://doi.org/10.1134/S000143382001003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382001003X

Keywords:

Navigation