Skip to main content
Log in

On the Initiation of Dynamic Slips on Faults by Man-Made Impacts

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

The subject of research is dynamic slips on large faults initiated by man-made impacts. In addition to recognized types of man-made impacts such as fluid injection or seismic vibrations, the possible trigger effect of rock extraction and displacement during mining operations is considered. It is shown that dynamic sliding can be initiated only on faults in which three geomechanical conditions for the occurrence of instability are fulfilled: closeness of the value of Coulomb stresses in the fault plane to the local ultimate tensile strength; the condition of weakening of frictional contact with an increasing sliding velocity and relative movement of fault sides; and the implementation of a certain ratio between the stiffness of the enclosing massif and the rate of reduction of resistance to friction. Features of formation of a dynamic slip on a fault are considered in the series of laboratory and numerical experiments. It is shown that the movement always begins in the segment with the property of velocity weakening, regardless of the location of such a segment relative to the load application. According to the calculations, the excavation of rock in a large mining quarry leads to a change of about 1 MPa in the Coulomb stresses in the fault plane in areas that significantly exceed the size of the nucleation zone of earthquakes with \(M \leqslant 6\). This may turn out to be sufficient to initiate seismogenic slips on stressed faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V., Tectonic earthquakes of anthropogenic origin, Izv.,Phys. Solid Earth, 2016, vol. 52, no. 2, pp. 173–194.

    Article  Google Scholar 

  2. Adushkin, V.V., Development of technogenic–tectonic seismicity in Kuzbass, Geol. Geofiz., 2018, vol. 59, no. 5, pp. 709-724.

    Google Scholar 

  3. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost' – indutsirovannaya i triggernaya (Technogenic Seismicity: Induced and Triggered), Moscow: IDG RAN, 2015.

  4. Adushkin, V.V., Kocharyan, G.G., Pavlov, D.V., Vinogradov, E.A., Goncharov, A.I., Kulikov, V.I., Kulyukin, A.A., Influence of seismic vibrations on the development of tectonic deformations, Dokl. Earth Sci., 2009, vol. 426, no. 1, pp. 588–590.

    Article  Google Scholar 

  5. Arkhipov, V.N., Borisov, V.A., Budkov, A.M., Val’ko, V.V., Galiev, A.M., Goncharova, O.P., Zaikov, I.M., Zamyshlyaev, B.V., Knestyapin, A.M., Korolev, V.S., Kuzovlev, V.D., Makarov, V.E., Seliverstov, I.Yu., Semenov, G.I., Smaznov, V.V., Smirnov, E.I., and Ushakov, O.N., Mekhanicheskoe deistvie yadernogo vzryva (Mechanical Action of Nuclear Explosion), Moscow: Fizmatlit, 2003.

  6. Batukhtin, I.V., Pavlov, D.V., Markov, V.K., and Varypaev, A.V., The effect of spatial heterogeneity of a fracture filler on the initiation of seismogenic fracture: Laboratory experiment, Dinamicheskie protsessy v geosferakh: Sb. nauch. tr. IDG RAN (Dynamical Processes in Geospheres: Collection of Scientific Works of IDG RAS), Moscow: Grafiteks, 2018, pp.117–124.

    Google Scholar 

  7. Bolt, B.A., Horn, W.L., Macdonald, G.A., and Scott, R.F., Geological Hazards, Springer, 1975, Moscow: Mir, 1978.

  8. Das, S. and Scholz, C.H., Off-fault aftershock clusters caused by shear stress increase, Bull. Seismol. Soc. Am., 1983, vol. 71, pp. 1669–1675.

    Google Scholar 

  9. Dieterich, J.H., Modeling of rock friction: experimental results and constitutive equations, J. Geophys. Res., 1979, vol. 84, pp. 2161–2168.

    Article  Google Scholar 

  10. Djadkov, P.G., Induced seismicity at the Lake Baikal: Principal role of load rate, Abstracts of the 29th General Assembly of the IASP of the Earth’s Interior, Thessaloniki, Greece, 1997, p. 359.

  11. Ellsworth, W.L. and Beroza, G.C., Seismic evidence for an earthquake nucleation phase, Science, 1995, vol. 268, pp. 851–855. https://doi.org/10.1126/science.268.5212.851

    Article  Google Scholar 

  12. Ellsworth, W.L., Injection-induced earthquakes, Science, 2013, vol. 341, no. 6142. https://doi.org/10.1126/science.1225942

  13. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R., and Davies, R.J., Global review of human-induced earthquakes, Earth Sci. Rev., 2018, vol. 178, pp. 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008

    Article  Google Scholar 

  14. Goncharov, A.I., Kulikov, V.I., and Martinson, N.M., On seismic action of mass explosions at KMA carriers, Gorn. Inf.-Anal. Byull. (Naucho-Tekh. Zh.), 2002. no. 1, pp. 162–164.

  15. Goncharov, A.I., Kulikov, V.I., Mineev, V.I., and Sedochenko, V.V., Seismic action of mass explosions in underground and open operations, Dinamicheskie protsessy vo vzaimodeistvuyushchikh geosferakh: Sb. nauch. tr. IDG RAN (Dynamical Processes in Interacting Geospheres: Collection of Scientific Works of IDG RAS), Moscow: GEOS, 2006, pp. 22–33.

    Google Scholar 

  16. Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., and Elsworth, D., Seismicity triggered by fluid injection-induced aseismic slip, Science, 2015, vol. 348, pp. 1224–1226. https://doi.org/10.1126/science.aab0476

    Article  Google Scholar 

  17. Hill, D.P. and Prejean, S.G., Dynamic triggering, Geophysical Treatise, Earthquake Seismology, Kanamori, H., Ed., Amsterdam: Elsevier, 2007.

    Google Scholar 

  18. Ide, S. and Takeo, M., Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 1997, vol. 102, pp. 27379–27391. https://doi.org/10.1029/97JB02675

    Article  Google Scholar 

  19. King, G.C.P., Stein, R.S., and Lin, J., Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 1994, vol. 84, pp. 935–953.

    Google Scholar 

  20. Kishkina, S.B., Parameters of the seismic effect of mass short-delay explosions, Vestn. NYaTs RK, 2004, no. 2, pp. 171–178.

  21. Kissin, I.G., Flyuidy v zemnoi kore: Geofizicheskie i tektonicheskie aspekty (Fluids in the Earth’s Crust: Geophysical and Tectonic Aspects), Moscow: Nauka, 2015.

  22. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

  23. Kocharyan, G.G. and Fedorov, A.E., Specific features of mechanics of the seismic process in a block geophysical medium, Dokl. Akad. Nauk SSSR, 1990, vol. 315, no. 6, pp. 1345–1349.

    Google Scholar 

  24. Kocharyan, G.G. and Ostapchuk, A.A., Influence of the viscosity of thin films on regularities of friction interaction of rock blocks, Dokl. Ross. Akad. Nauk, 2015, vol. 463, no. 3, pp. 343–346.

    Google Scholar 

  25. Kocharyan, G.G. and Rodionov, V.N., On the nature of tectonic forces, Dokl. Akad. Nauk SSSR, 1988, vol. 302, no. 2, pp. 304–305.

    Google Scholar 

  26. Kocharyan, G.G., Kulyukin, A.A., Markov, V.K., Markov, D.V., and Pavlov, D.V., Small perturbations and stress–deformation state of the Earth’s crust, Fiz. Mezomekh., 2005, vol. 8, no. 1, pp. 23–36.

    Google Scholar 

  27. Kocharyan, G.G., Ostapchuk, A.A., and Pavlov, D.V., The regime of fault zone deformation and initiating potential of seismic oscillations, Triggernye effekty v geosistemakh: Materialy Vtorogo Vseros. seminara-soveshchaniya (Trigger Effects in Geosystems: Proceedings of the Second All-Russian Seminar and Meeting), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2013, pp. 34–45.

  28. Kocharyan, G.G., Ostapchuk, A.A., and Martynov, V.S., Measurement of the fault deformation regime from fluid injection, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2017a, no. 2, pp. 20–28.

  29. Kocharyan, G.G., Novikov, V.A., Ostapchuk, A.A., and Pavlov, D.V., A study of different fault slip modes governed by the gouge material composition in laboratory experiments, Geophys. Int. J., 2017b, vol. 208, pp. 521–528. https://doi.org/10.1093/gji/ggw409

    Article  Google Scholar 

  30. Korotkin, V.G., Volume problem for elastically isotropic space, Sb. Gidroenergoproekta, 1938. no. 4.

  31. Kuz’min, Yu.O., Modern super-intensive surface deformations in platform fault zones, Geologicheskoe izuchenie i ispol’zovanie nedr (Geological Investigation and Exploration of Mineral Resources), Moscow: Geoinformmark, 1996, vol. 4, pp. 43–53.

    Google Scholar 

  32. Kuz’min, Yu.O., Modern geodynamics of fault zones: Real-time fault formation, Geodin. Tektonofiz., 2014, no. 5, pp. 401–443. https://doi.org/10.5800/GT-2014-5-2-0135

  33. Kuz’min, Yu.O. and Zhukov, V.S., Sovremennaya geodinamika i variatsii fizicheskikh svoistv gornykh porod (Modern Geodynamics and Variations of Physical Properties of Rocks), Moscow: Gorn. kn., 2012.

  34. Leonov, Yu.G., Lithospheric stress and inner-plate tectonics, Geotektonika, 1995, no. 6, pp. 3–21.

  35. Lovchikov, A.V., Strong mountain-tectonic strikes and technogenic earthquakes on Russian minery, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2013, no. 4, pp. 68–73.

  36. Love, A., A Treatise on Mathematical Theory of Elasticity, Cambridge: Cambridge University Press, 1892; Moscow–Leningrad, ONTI, 1935.

  37. Melosh, H.J., Acoustic fluidization: a new geologic process?, J. Geophys. Res., 1979, vol. 84, pp. 7513–7520.

    Article  Google Scholar 

  38. Nur, A., Mavko, G., Dvorkin, J., and Galmudi, D., Critical porosity: A key to relating physical properties to porosity in rocks, Leading Edge, 1998, vol. 17, no. 3, pp. 357–362. https://doi.org/10.1190/1.1437977

    Article  Google Scholar 

  39. Papageorgiou, A.S. and Aki, K., A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Pt. II. Applications of the model, Bull. Seismol. Soc. Am., 1983, vol. 73, pp. 953–978.

    Google Scholar 

  40. Peng, Z. and Gomberg, J., An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nature Geosci., 2010, vol. 3, pp. 599–607. https://doi.org/10.1038/ngeo940

    Article  Google Scholar 

  41. Rice, J.R., Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, Fault Mechanics and Transport Properties of Rocks: A Festschrift in Honor of W.F. Brace, Evans, B. and Wong, T.-F., Eds., London: Academic, 1992, pp. 475–504.

  42. Rodionov, V.N., Sizov, I.A., and Tsvetkov, V.M., Osnovy geomekhaniki (Fundamentals of Geomechanics), Moscow: Nedra, 1986.

  43. Ruzhich, V.V., Medvedev, V.Ya., and Ivanova, L.A., Curing seismogenic faults and recurrence of earthquakes, Seismichnost’ Baikal’skogo rifta. Prognosticheskie aspekty: Sb. nauch. tr. (Seismicity of the Baikal Rift: Prognostic Aspects (Collection of Scientific Works)), Novosibirsk: Nauka, 1990, pp. 44–50.

  44. Scholz, C.H., Earthquakes and friction laws, Nature, 1998, vol. 391, pp. 37–42. https://doi.org/. https://doi.org/10.1038/34097.

  45. Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge Univ. Press, 2002.

  46. Seismichnost’ pri gornykh rabotakh (Seismicity in Mining Operations), Mel’nikov, N.N., Ed., Apatity: KNTs RAN, 2002.

  47. Sobolev, G.A. and Ponomarev, A.V., Dynamics of fluid-triggered fracturing in the models of a geological medium, Izv.,Phys. Solid Earth, 2011, vol. 47, no. 10, pp. 902–918.

    Article  Google Scholar 

  48. Sobolev, G.A., Kol’tsov, A.V., and Andreev, V.O., Trigger effect of oscillations in the earthquake model, Dokl. Ross. Akad. Nauk, 1991, vol. 319, pp. 337–341.

    Google Scholar 

  49. Sobolev, G.A., Ponomarev, A.V., Maibuk, Yu.Ya., Zakrzhevskaya, N.A., Ponyatovskaya, V.I., Sobolev, D.G., Khromov, A.A., and Tsyvinskaya, Yu.V., The Dynamics of the acoustic emission with water initiation, Izv.,Phys. Solid Earth, 2010, vol. 46, no. 2, pp. 136–153.

    Article  Google Scholar 

  50. Sobolev, G.A., Zakrzhevskaya, N.A., and Sobolev, D.G., Triggering of repeated earthquakes, Izv.,Phys. Solid Earth, 2016, vol. 52, no. 2, pp. 155–172.

    Article  Google Scholar 

  51. Stec, K., Characteristics of seismic activity of the Upper Silesian Coal Basin in Poland, Geophys. J. Int., 2007, vol. 168, pp. 757–768. https://doi.org/10.1111/j.1365-246X.2006.03227.x

    Article  Google Scholar 

  52. Townend, J. and Zoback, M.D., How faulting keeps the crust strong, Geology, 2000, vol. 28, pp. 399–402. https://doi.org/10.1130/0091-7613(2000)028<0399:HFKTCS>2.3.CO

    Article  Google Scholar 

  53. Trifonov, V.G., Neotektonika podvizhnykh poyasov (Neotectonics of Mobile Belts), Moscow: GEOS, 2017.

  54. Zoback, M.D. and Zoback, M.L., State of stress in the Earth’s lithosphere, International Handbook of Earthquake and Engineering Seismology, Part A, Lee, W.H., Kanamori, H., Jennings, P.C., and Kisslinger, C., Eds., Amsterdam: Academic Press, 2002, pp. 559–568.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-17-00095). The research was carried out under the state task for projects nos. 0146-2019-0001 and 0146-2019-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Kishkina.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharyan, G.G., Batuhtin, I.V., Budkov, A.M. et al. On the Initiation of Dynamic Slips on Faults by Man-Made Impacts. Izv. Atmos. Ocean. Phys. 55, 1559–1571 (2019). https://doi.org/10.1134/S0001433819100049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819100049

Keywords:

Navigation