Skip to main content
Log in

Analysis of the Seasonal Dependence of the Brightness Temperature of the Glacier Sheet of Antarctica by Microwave Satellite Data

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CIRCUMPOLAR REGIONS USING REMOTE SENSING
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper, an analysis of seasonal dependences of the brightness temperature of different regions of Antarctica according to radiometer data from MIRAS (SMOS satellite) and SSMIS (DMSP series satellites) is presented. Queen Maud Land (Norwegian: Dronning Maud Land) was chosen as the region of study, which includes the main zones of Antarctica: the dome, the zone of runoff winds, and the coastal zone. The interrelation of time dynamics of brightness temperature as a function of the change in climatic characteristics of regions is considered. The main factors influencing the change in brightness temperature in different regions of the Antarctic glacier sheet are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Antarctic Station Catalogue, New Zealand, Christchurch: COMNAP and contributors, 2017.

  2. Arthern, R.J., Winebrenner, D.P., and Vaughan, D.G., Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 2006, vol. 111, D06107.

    Article  Google Scholar 

  3. Basharinov, A.E. and Gurvich, A.S., A study of the radio emission of the atmosphere and earth’s surface to the satellite “kosmos-243"], Vestn. Akad. Nauk USSR, 1970, no. 10, pp. 37–42.

  4. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley-Interscience, 1983.

    Google Scholar 

  5. Bordonskii, G.S., Gurulev, A.A., and Krylov, S.D., Electromagnetic loss of fresh ice in microwave range at a temperature of 0°C, J. Commun. Technol. Electron., 2014, vol. 59, no. 6, pp. 536–540.

    Article  Google Scholar 

  6. Boyarskii, D.A. and Tikhonov, V.V., Bound water influence on dielectric permeability of wet and frozen soils, Preprint of Space Research Institute, Russ. Acad. Sci., 2003, no. Pr-2084.

  7. Boyarskii, D.A., Tikhonov, V.V., Kleeorin, N.I., and Mirovskii, V.G., Inclusion of scattering losses in the models of the effective permittivity of dielectric mixtures and applications to wet snow, Electromagn. Waves Appl., 1994, vol. 8, no. 11, pp. 1395–1410.

    Google Scholar 

  8. Carlsen, T., Birnbaum, G., Ehrlich, A., Freitag, J., Heygster, G., Istomina, L., Kipfstuhl, S., Orsi, A., Schafer, M., and Wendisch, M., Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica, Cryosphere, 2017, no. 11, pp. 2727–2741.

  9. Chang, A.T.C., Choudhury, B.J., and Gloersen, P., Microwave brightness of polar firn as measured by Nimbus 5 and 6 ESMR, Glaciology, 1980, vol. 25, no. 91, pp. 85–92.

    Article  Google Scholar 

  10. Das, S.B., Alley, R.B., Reusch, D.B., and Shuman, C.A., Temperature variability at Siple Dome, West Antarctica, derived from ECMWF re-analyses, SSM/I and SMMR brightness temperatures and AWS records, Ann. Glaciol., 2002, vol. 34, pp. 106–112.

    Article  Google Scholar 

  11. Ermakov, D.M., Raev, M.D., Suslov, A.I., and Shar-kov, E.A., Electronic long-term database of global radiothermal field of the Earth in the context of multiscale investigation of the ocean-atmosphere system, Issled. Zemli Kosmosa, 2007, no. 1, pp. 7–13.

  12. Ferrigno, J.G., Williams, R.S., Rosanova, E., Lucchitta, B.K., and Swithinbank, C., Analysis of coastal change in Marie Byrd Land and Ellsworth Land, West Antarctica, using Landsat imagery, Ann. Glaciol., 1998, vol. 27, pp. 33–40.

    Article  Google Scholar 

  13. Gorodetskaya, I.V., Kneifel, S., Maahn, M., Tricht, K., Thiery, W., Schween, J.H., Mangold, A., Crewell, S., and Lipzig, N.P.M., Cloud and precipitation properties from ground-based remote sensing instruments in East Antarctica, Cryosphere, 2015, no. 9, pp. 285–304.

  14. Grankov, A.G. and Mil’shin, A.A., Vzaimosvyaz’ radioizlucheniya sistemi okean–atmosfera s teplovymi i dinamicheskimi processami na grani razdela (The Relationship of Radio Emission of the Ocean–Atmosphere System with Thermal and Dynamic Processes on the Partitioning Boundary), Moscow: Fizmatlit, 2004.

  15. Gurvich, A.S. and Kutuza, B.G., Kosmos-243: The first experiment in the world to study the Earth from space by radiophysical methods, Issled. Zemli Kosmosa, 2010, no. 2, pp. 14–25.

  16. Gurvich, A.S., Kalinin, V.I. and Matveev, D.T., Influence of the internal structure of glaciers on their thermal radio emission, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1973, vol. 9, no. 12, pp. 1247–1256.

    Google Scholar 

  17. Gutierrez, A., Castro, R., and Vieira, P., SMOS L1 Processor L1c Data Processing Model, Lisboa, Portugal: DEIMOS Engenharia, 2014. http://earth.esa.int/documents/ 10174/1854456/SMOS_L1c-Data-Processing-Models.

    Google Scholar 

  18. Herzfeld, U.C., Atlas of Antarctica, Topographic Maps from Geostatistical Analysis of Satellite Radar Altimeter Data, Springer, 2004.

    Google Scholar 

  19. Jarvinen, O., Mattila, O.-P., Sinisalo, A., and Lepparanta, M., Snow research in the Dronning Maud Land within the Finnish Antarctic research program in 1989–2014, Geophysica, 2014, vol. 50, no. 2, pp. 27–48.

    Google Scholar 

  20. Karkas, E., Martma, T., and Sonninen, E., Physical properties and stratigraphy of surface snow in Western Dronning Maud Land, Antarctica, Polar Res., 2005, vol. 24, nos. 1–2, pp. 55–67.

    Article  Google Scholar 

  21. Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.J., Font, J., Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., Hahne, A., Martin-Neira, M., and Mecklenburg, S., The SMOS Mission: New tool for monitoring key elements of the global water cycle, Proc. IEEE, 2010, vol. 98, no. 5, pp. 666–687.

    Article  Google Scholar 

  22. Kieffer, H., Kargel, J.S., and Barry, R., et al., New eyes in the sky measure glaciers and ice sheets, EOS, Trans. Am. Geophys. Union, 2000, vol. 81, no. 24, pp. 265–271.

    Article  Google Scholar 

  23. Koenig, L.S., Steig, E.J., Winebrenner, D.P., and Shuman, C.A., A link between microwave extinction length, firn thermal diffusivity, and accumulation rate in West Antarctica, J. Geophys. Res., 2007, vol. 112, F03018.

    Article  Google Scholar 

  24. Kotlyakov, V.M., Izbrannye sochineniya (Selected Works), vol. 1: Glyatsiologiya Antarktidy (Glaciology of Antarctica), Moscow: Nauka, 2000.

  25. Kotlyakov, V.M., Slovar’ sovremennykh geograficheskikh nazvanii (Dictionary of Modern Geographical Names), Ekaterinburg: U-Faktoriya, 2006.

  26. Leduc-Leballeur, M., Picard, G., Mialon, A., Arnaud, L., Lefebvre, E., Possenti, P., and Kerr, Y., Modeling L‑band brightness temperature at Dome C, Antarctica and comparison with SMOS observations, IEEE Trans. Geosci. Remote Sens., 2015, vol. 53, no. 7, pp. 1–11.

    Article  Google Scholar 

  27. Lubin, D. and Massom, R., Remote sensing of Earth’s polar regions: Opportunities for computational science, Comput. Sci. Eng., 2007, vol. 9, no. 1, pp. 58–71.

    Article  Google Scholar 

  28. Macelloni, G., Brogioni, M., Pettinato, S., Zasso, R., Crepaz, A., Zaccaria, J., Padovan, B., and Drinkwater, M.R., Ground-based L-band emission measurements at Dome-C Antarctica: The DOMEX-2 experiment, IEEE Trans. Geosci. Remote Sens., 2013, vol. 51, no. 9, pp. 4718–4730.

    Article  Google Scholar 

  29. Macelloni, G., Brogioni, M., Aksoy, M., Johnson, J.T., Jezek, K.C., and Drinkwater, M.R., Understanding SMOS data in Antarctica, IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2014, pp. 3606–3609.

  30. Picard, G., Brucker, L., Fily, M., Gallee, H., and Krinner, G., Modeling time series of microwave brightness temperature in Antarctica, Glaciology, 2009, vol. 55, no. 191, pp. 537–551.

    Article  Google Scholar 

  31. Polder, D. and van Santen, J.H., The effective permeability of mixtures of solids, Physica, 1946, vol. 12, no. 5, pp. 257–271.

    Article  Google Scholar 

  32. Ridley, J.K., Surface melting on Antarctic Peninsula ice shelves detected by passive microwave sensors, Geophys. Res. Lett., 1993, vol. 20, no. 23, pp. 2639–2642.

    Article  Google Scholar 

  33. Sahr, K., White, D., and Kimerling, A.J., Geodesic discrete global grid system, Cartogr. Geogr. Inf. Sci., 2003, vol. 30, no. 2, pp. 121–134.

    Article  Google Scholar 

  34. Sato, K. and Hirasawa, N., Statistics of Antarctic surface meteorology based on hourly data in 1957–2007 at Syowa station, Polar Sci., 2007, no. 1, pp. 1–15.

  35. Sharkov, E.A., Passive Microwave Remote Sensing of the Earth: Physical Foundations, Berlin: Springer/PRAXIS, 2003.

    Google Scholar 

  36. Shuman, C.A. and Comiso, J.C., In situ and satellite surface temperature records in Antarctica, Ann. Glaciol., 2002, vol. 34, pp. 113–120.

    Article  Google Scholar 

  37. Souverijns, N., Gossart, A., Gorodetskaya, I.V., Lhermitte, S., Mangold, A., Laffineur, Q., Delcloo, A., and Lipzig, N.P.M., How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica, Cryosphere, 2018, vol. 12, pp. 1987–2003.

    Article  Google Scholar 

  38. Stewart, J., Antarctica. An Encyclopedia, vols. 1, 2, North Carolina: McFarland and Co., 2011.

  39. Sugiyama, S., Enomoto, H., Fujita, S., Fukui, K., Nakazawa, F., Holmlund, P., and Surdyk, S., Dielectric permittivity of snow measured along the route traversed in the Japanese–Swedish Antarctic expedition 2007/08, Ann. Glaciol., 2010, vol. 51, no. 55, pp. 9–15.

    Article  Google Scholar 

  40. Sugiyama, S., Enomoto, H., Fujita, S., Fukui, K., Nakazawa, F., Holmlund, P., and Surdyk, S., Snow density along the route traversed by the Japanese–Swedish Antarctic expedition 2007/08, Glaciology, 2012, vol. 58, no. 209, pp. 529–539.

    Article  Google Scholar 

  41. Sun, N. and Weng, F., Evaluation of Special Sensor Microwave Imager/Sounder (SSMIS) environmental data records, IEEE Trans. Geosci. Remote Sens., 2008, vol. 46, no. 4, pp. 1006–1016.

    Article  Google Scholar 

  42. Tedesco, M., Remote Sensing of the Cryosphere, Oxford: JohnWiley and Sons, 2015.

    Book  Google Scholar 

  43. Tikhonov, V.V., Boyarskii, D.A., Repina, I.A., Raev, M.D., Sharkov, E.A., and Alexeeva, T.A., Snow cover effect on brightness temperature of Arctic ice fields based on SSM/I data, Proceedings of Prog. Electromagn. Res. Symp. (PIERS), Stockholm, Sweden, 2013, pp. 514–518.

  44. Tikhonov, V.V., Boyarskii, D.A., Sharkov, E.A., Raev, M.D., Repina, I.A., Ivanov, V.V., Alexeeva, T.A., and Komarova, N.Yu., Microwave model of radiation from the multilayer “ocean–atmosphere” system for remote sensing studies of the polar regions, Prog Electromagn. Res. B, 2014, vol. 59, pp. 123–133.

    Article  Google Scholar 

  45. Tikhonov, V.V., Repina, I.A., Raev, M.D., Sharkov, E.A., Ivanov, V.V., Boyarskii, D.A., Alexeeva, T.A., and Komarova, N.Yu., A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Adv. Space Res., 2015, vol. 56, no. 8, pp. 1578–1589.

    Article  Google Scholar 

  46. Tikhonov, V.V., Raev, M.D., and Sharkov, E.A., Boyarskii, D.A., and Komarova, N.Yu., Model of intrinsic microwave emission of Antarctic snow-firn layers, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2017, vol. 14, no. 1, pp. 200–204.

    Article  Google Scholar 

  47. Van der Veen, C.J. and Jezek, K.C., Seasonal variations in brightness temperature for Central Antarctica, Ann. Glaciol., 1993, vol. 17, pp. 300–306.

    Article  Google Scholar 

  48. West, R., Winebrenner, D., Tsang, L., and Rott, H., Microwave emission from density-stratified Antarctic firn at 6 cm wavelength, Glaciology, 1996, vol. 42, pp. 63–76.

    Article  Google Scholar 

  49. Williams, R.S., Ferrigno, J.G., Swithinbank, C., Lucchitta, B.K., and Seekins, B.A., Coastal-change and glaciological maps of Antarctica, Ann. Glaciol., 1995, vol. 21, pp. 284–290.

    Article  Google Scholar 

  50. Zwally, H.J., Microwave emissivity and accumulation rate of polar firn, Glaciology, 1977, vol. 18, no. 79, pp. 195–215.

    Article  Google Scholar 

  51. Zwally, H.J. and Fiegles, S., Extent and duration of Antarctic surface melt, Glaciology, 1994, vol. 40, no. 136, pp. 463–476.

    Article  Google Scholar 

  52. Zwally, H.J. and Giovinetto, M.B., Accumulation in Antarctica and Greenland derived from passive-microwave data: A comparison with contoured complications, Ann. Glaciol., 1995, vol. 21, pp. 123–130.

    Article  Google Scholar 

Download references

Funding

This work was supported under the topic “Monitoring” (State assignment on the subject of fundamental scientific research, state registration no. 01.20.0.2.00164) (D.A. Boyarskii, M.D. Raev, and E.A. Sharkov). The study of snow cover and its influence on microwave radiation of ice sheet of Antarctica was partially supported by the Russian Foundation for Basic Research (RFBR grant no. 18-05-00427) (V.V. Tikhonov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tikhonov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, V.V., Raev, M.D., Khvostov, I.V. et al. Analysis of the Seasonal Dependence of the Brightness Temperature of the Glacier Sheet of Antarctica by Microwave Satellite Data. Izv. Atmos. Ocean. Phys. 55, 1302–1313 (2019). https://doi.org/10.1134/S0001433819090512

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090512

Keywords:

Navigation