Skip to main content
Log in

Correlation of the Sentinel 1 Radar Data with Ground-Based Measurements of the Soil Temperature and Moisture

  • PHYSICAL FOUNDATION OF EARTH OBSERVATION AND REMOTE SENSING
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This study analyzes the correlation between the Sentinel 1 radar data in the C band and the soil temperature and moisture measured at seven ground-based stations in France and Germany for the period of 2014–2016. The results of ground-based measurements of the soil temperature and moisture are available on the International Soil Moisture Network website. It has been shown that there are both positive and negative correlations between the backscattering coefficient (BSC) and the soil temperature and moisture measured on the ground. According to our results, the correlation depends on the soil texture and surface roughness. For strongly correlated variables, the regression relationships of the BSC with the soil parameters have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Attema, E.P.W. and Ulaby, F.T., Vegetation modeled as a water cloud, Radio Sci. (USA), 1978, vol. 13, pp. 357–364.

    Article  Google Scholar 

  2. Belyaeva, T.A., Bobrov, A.R., Bobrov, P.P., Galleev, O.V., and Mandrygina, V.N., Determination of the model parameters of dielectric permittivity of soils with different density and different humus content from experimental measurements in the frequency range 0.1–20 GHz, Issled. Zemli Kosmosa, 2003, no. 5, pp. 28–34.

  3. Blumberg, D.G., Freilikher, V., Lyalko, I.V., Vulfson, L.D., Kotlyar, A.L., Shevchenko, V.N., and Ryaboko-nenko, A.D., Soil moisture (water-content) assessment by an airborne scatterometer, Remote Sens. Environ., 2000, vol. 71, pp. 309–319.

    Article  Google Scholar 

  4. Dubois, P.C., van Zyl, J.J., and Engman, T., Measuring soil moisture with imaging radars, IEEE Trans. Geophys. Remote Sens., 1995, vol. 33, no. 4, pp. 916–926.

    Google Scholar 

  5. De Roo, R.D., Ulaby, F.T., and Dobson, M.C., Using microwave radar for soil moisture inversion under soybean canopies, Proc. of GRS Symp. IGARSS, 1998.

  6. Gherboudj, I., Magagi, R., Berg, A.A., and Toth, B., Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data, Remote Sens. Environ., 2011, vol. 115, pp. 33–43.

    Article  Google Scholar 

  7. Gorrab, A., Zribi, M., Baghdadi, N., Mougenot, B., and Chabaane, Z., Potential of X-band TerraSAR-X and COSMO-SkyMed SAR data for the assessment of physical soil parameters, Remote Sens., 2015, vol. 7, pp. 747–766.

    Article  Google Scholar 

  8. Jackson, T.J. and Schmugge, T.J., Passive microwave remote-sensing system for soil moisture. Some supporting research, IEEE Trans. Geophys. Remote Sens., 1989, vol. 27, pp. 225–235.

    Article  Google Scholar 

  9. Khaldoune, J., Van Bochove, E., Bernier, M., and Nolin, M.C., An approach for mapping frozen soil of agricultural land under snow cover using RADARSAT-1 and RADARSAT-2, Proc. of IGARSS’2008, Boston: Mass., 2008, v. 3, pp. 382–385.

  10. Khaldoune, J., van Bochove, E., Bernier, M., and Nolin, M.C., Mapping agricultural frozen soil on the watershed scale using remote sensing data, Appl. Environ. Soil Sci., 2011, vol. 2011, id 193237. https://doi.org/10.1155/2011/193237

  11. Muzalevskii, K.V., Mironov, V.L., Boike, J., Shvaleva, A.A., Yevtyushkin, A.V., and Filatov, A.V., The ability to measure the temperature of the frozen active topsoil of the Arctic tundra based on the ALOS PALSAR data, Izv. Vyssh. Uchebn. Zaved.,Fiz., 2013, vol. 56, no. 10, pp. 91–93.

    Google Scholar 

  12. Oh, Y., Sarabandi, K., and Ulaby, F.T., An empirical model and an inversion technique for radar scattering from bare soil surfaces, IEEE Trans. Geophys. Remote Sens., 1992, vol. 30, pp. 370–381.

    Article  Google Scholar 

  13. Srivastava, H.S., Patel, R., and Navalgund, R.R., How far SAR has fulfilled its expectation for soil moisture retrieval, SPIE Dig. Lib., 2006, id 6410, pp. 1–12.

  14. Thoma, D.P., Moran, M.S., Bryant, R., Rahman, M.M., Holifield, CollinsC.D., Keefer, T.O., Noriega, R., Osman, I., Skrivin, S.M., Tischler, M.A., Bosch, D.D., Starks, P.J., and Peters-Lidard, C.D., Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils, Remote Sens. Environ., 2008, vol. 112, pp. 403–414.

    Article  Google Scholar 

  15. Ulaby, F.T., Moore, R.K., and Fung, A.K., Microwave Remote Sensing: Active and Passive, vol. 3: From Theory to Applications, Dedham, Mass.: Artech House, 1986.

    Google Scholar 

  16. Zribi, M. and Dechambre, M., A new empirical model to retrieve soil moisture and roughness from radar data, Remote Sens. Environ., 2003, vol. 84, pp. 42–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Rodionova.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionova, N.V. Correlation of the Sentinel 1 Radar Data with Ground-Based Measurements of the Soil Temperature and Moisture. Izv. Atmos. Ocean. Phys. 55, 939–948 (2019). https://doi.org/10.1134/S0001433819090421

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090421

Keywords:

Navigation