Skip to main content
Log in

Use of Along-Track Altimeter Data to Verify Numerical Wave Models

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A technology for extracting along-track altimeter data collocated with space-irregular buoy measurements and data on the numerical simulation of waves is developed using AVISO altimetry data for the period 2013–2016. Data on the numerical simulation of waves are obtained on a regular spacetime grid for two wave models: WAM and its modified version, WAM-M. Satellite data are calibrated jointly and separately for each satellite using a system of 41 buoys. Both calibrations are then used to estimate mean-square-root deviations (RMSDs) of the Indian Ocean wind-wave height simulation data from their corresponding calibrated altimetry data. It is found that the calibration type does not significantly affect the studied RMSDs, but the RMSD values themselves have significant spatial variability. It is shown that it is possible to determine the advantages of some numerical models over others in terms of RMSD values in different zones of the Indian Ocean and the ocean in general. The reasons for the intermittency of RMSD values for the considered models depending on the Indian Ocean zone are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alpers, W., Theory of radar imaging of internal waves, Nature, 1985, vol. 314, no. 6008, pp. 245–247.

    Article  Google Scholar 

  2. Ardhuin, E., Rogers, E., Babanin, A.V., et al., Semiempirical dissipation source functions for ocean waves. Pt. I: Definition, calibration, and validation, J. Phys. Oceanogr., 2010, vol. 40, pp. 1917–1941.

    Article  Google Scholar 

  3. Bondur, V.G., Aerospace methods in modern oceanology, Novye idei v okeanologii (New Ideas in Oceanology), vol. 1: Fizika. Khimiya. Biologiya (Physics, Chemistry, and Biology), 2004, pp. 55–117.

  4. Bondur, V.G., Krapivin, V.E., and Savinykh, V.P., Monitoring i prognozirovanie prirodnykh katastrof (Monitoring and Forecasting of Natural Disasters), Moscow: Nauchnyi mir, 2009.

  5. Brown, G., Stanley, H., and Roy, N., The wind-speed measurement capability of spaceborne radar altimeters, IEEE J. Oceanic Eng., 1981, vol. 6, no. 1, pp. 59–63.

    Article  Google Scholar 

  6. Caires, S. and Sterl, A., Validation of ocean wind and wave data using triple collocation, J. Geophys. Res., 2003, vol. 108, p. 3098. https://doi.org/10.1029/2002JC001491

    Article  Google Scholar 

  7. Chen-Zhang, D.D., Ruf, C.S., Ardhuin, E., and Park, J., GNSS-R nonlocal sea state dependencies: Model and empirical verification, J. Geophys. Res.: Oceans, 2016, vol. 121, no. 11. https://doi.org/10.1002/2016JC012308

  8. Dobson, E., Monaldo, E., Goldhirsh, J., and Wilkerson, J., Validation of Geosat altimeter-derived wind speeds and significant wave heights using buoy data, J. Geophys. Res., 1987, vol. 92, pp. 10719–10731.

    Article  Google Scholar 

  9. Fu, L.L. and Cazenave, A., Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, Academic Press, 2000, vol. 69.

    Google Scholar 

  10. Glazman, R.E. and Greysukh, A., Satellite altimeter measurements of surface wind, J. Geophys. Res., 1993, vol. 98, pp. 2475–2483.

    Article  Google Scholar 

  11. Golitsyn, G.S., Polnikov, V.G., and Pogarskii, E.A., Report on stage 3 of research project GK 11.519.11.5023, TsITIS registration no. 02201357201, 2013.

  12. Günter, H., Hasselmann, S., and Janssen, P.A.E.M., Tech. Rep. no. 4. DKRZ WAM4 model documentation, Hamburg, 1992. http://www.ecmwf.int/research/era/ do/get/era-interfm.

  13. Hwang, P.A. and Fan, Y., Effective fetch and duration of tropical cyclone wind fields estimated from simultaneous wind and wave measurements: surface wave and air–sea exchange computation, J. Phys. Oceanogr., 2017, no. 2, pp. 447–470. https://doi.org/10.1175/JPO-D-16-0180.1

  14. Janssen, P.A.E.M., Abdalla, S., Hersbach, H., et al., Error estimation of buoy, satellite, and model wave height data, J. Atmos. Oceanic Technol., 2007, vol. 24, no. 9, pp. 1665–1677.

    Article  Google Scholar 

  15. Jensen, R.E., Swail, V.R., Bouchard, R.H., et al., Field laboratory for ocean sea state investigation and experimentation: FLOSSIE Intra-measurement evaluation of 6N wave buoy systems, 14th International Workshop on Wave Hindcasting and Forecasting, Key West, Fla., 2015. http://www.waveworkshop.org/14thWaves/index.htm.

  16. Komen, G.L., Cavaleri, L., Donelan, M., et al., Dynamics and Modelling of Ocean Waves, Cambridge: Univ. Press, 1994.

    Book  Google Scholar 

  17. Kubryakov, A.A., Polnikov, V.G., Pogarskii, F.A., and Stanichnyi, S.V., Comparing numerical and satellite data on wind wave fields in the Indian Ocean, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 2, pp. 130–135.

    Article  Google Scholar 

  18. Lavrova, O.Yu. and Kostyanoi, A.G., Lebedev, et al., Kompleksnyi sputnikovyi monitoring morei Rossii (Integrated Satellite Monitoring of the Seas of Russia), Moscow: IKI RAN, 2011. Liu, Q., Babanin, A.V., and Guan, C., et al., Calibration and validation of HY-2 altimeter wave height, J. Atmos. Oceanic Technol., vol. 33, no. 3, pp. 919–936.

  19. Martin, S., An Introduction to Ocean Remote Sensing, Cambridge: Univ. Press, 2014.

    Google Scholar 

  20. Mentaschi, L. and Besio, G., Problems in RMSE-based wave model validations, Ocean Modell., 2013, vol. 72, no. 1, pp. 53–58.

    Article  Google Scholar 

  21. Polnikov, V.G., Wind-wave model with an optimized source function, Izv., Atmos. Ocean. Phys., 2005, vol. 41, no. 5, pp. 594–610.

    Google Scholar 

  22. Polnikov, V.G., Spectral description of the dissipation mechanism for wind waves. Eddy viscosity model, Mar. Sci., 2012, vol. 2, no. 3, pp. 13–26.

    Article  Google Scholar 

  23. Polnikov, V.G. and Innocentini, V., Comparative study performance of wind wave model: WAVEWATCH-modified by the new source function, Eng. Appl. Comput. Fluid Mech., 2008, vol. 2, no. 4, pp. 466–481.

    Google Scholar 

  24. Polnikov, V.G., Dymov, V.I., Pasechnik, T.A., et al., Real merits of the wind wave model with an optimized source function, Dokl. Earth Sci., 2007, vol. 417, no. 2, pp. 1375–1379.

    Article  Google Scholar 

  25. Queffeulou, P., Long-term quality status of wave height and wind speed measurements from satellite altimeters, Mar. Geod., 2004, vol. 27, nos. 3–4, pp. 495–510.

    Article  Google Scholar 

  26. Queffeulou, P., Merged altimeter wave height data base. An update, Proc. ESA Living Planet Symp.-2013, Edinburgh, U.K., 2013

  27. Samiksha, S.V., Polnikov, V.G., Vethamony, P., et al., Verification of model wave heights with long-term moored: Application to wave field over the Indian Ocean, Ocean Eng., 2015, vol. 104, pp. 469–479.

    Article  Google Scholar 

  28. Shanas, P.R., Kumar, V.S., and Hithin, N.K., Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data, Ocean Eng., 2014, vol. 83, pp. 24–35.

    Article  Google Scholar 

  29. Vethamony, P., Sudheesh, K., Rupal, S.P., et al., Wave modelling for the north Indian Ocean using MSMR analysed winds, Int. J. Remote Sens., 2006, vol. 27, no. 18, pp. 3767–3780.

    Article  Google Scholar 

  30. Young, I.R., Zieger, S., and Babanin, A., Global trends in wind speed and wave height, Science, 2011, vol. 332, no. 6028, pp. 451–455. https://doi.org/10.1126/science.1197219

    Article  Google Scholar 

  31. Young, Y., Vinoth, J., Zieger, S., and Babanin, A.V., Investigation of trends in extreme value wave height and wind speed, J. Geophys. Res., 2012, vol. 117, no. C11, C00J06. https://doi.org/10.1029/2011JC007753

    Article  Google Scholar 

  32. Young, L.R., Babanin, A., and Zieger, S., The decay rate of ocean swell observed by altimeter, J. Phys. Oceanogr., 2013, vol. 43, pp. 2322–2333.

    Article  Google Scholar 

  33. Young, I.R., Sanina, E., and Babanin, A.V., Calibration and cross-validation of a global wind and wave database of altimeter, radiometer and scatterometer measurements, J. Atmos. Oceanic Technol., 2017, vol. 34, pp. 1285–1306.

    Article  Google Scholar 

  34. Zieger, S., Vinoth, J., and Young, I.R., Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years, J. Atmos. Oceanic Technol., 2009, vol. 26, no. 12, pp. 2549–2564.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 14-05-62692-Ind-a (wave-field modeling and comparison with altimeter data) and Russian Science Foundation, project no. 15-17-20020 (calibration of altimeter data and comparative analysis of satellite measurements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Polnikov.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polnikov, V.G., Pogarskii, F.A., Zilitinkevich, N.S. et al. Use of Along-Track Altimeter Data to Verify Numerical Wave Models. Izv. Atmos. Ocean. Phys. 55, 1089–1097 (2019). https://doi.org/10.1134/S000143381909038X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381909038X

Keywords:

Navigation