Skip to main content
Log in

Aerial Video-Spectral Survey in the Search for Fragments of Separated Parts of Launch Vehicles on the Ground

  • METHODS AND TOOLS FOR SPACE DATA PROCESSING AND INTERPRETATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The possibility of finding fragments of separated parts (SPs) of launch vehicles (LVs) on the ground on the basis of processing data from a video spectral (hyperspectral) aerial survey in the range of 0.4–1.0 μm is considered. The quality of special precorrection methods is estimated by comparison during thematic processing by spectral proximity measures, including the special delta-vector metric, modified Terebizh metric, and correlation factors, as well as with the use of the subpixel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Matthew, M.W., Adler-Golden, S.M., Berk, A., et al., Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data, SPIE Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery IX, 2003.

  2. Okov, I.N., Ostrikov, V.N., and Plakhotnikov, O.V., RF Patent 2491629, 2013.

  3. Ostrikov, V.N. and Kirienko, A.V., Navigational–correlation correction of images distorted by mutual line shifts, Inf.-Izmer. Upr. Sist., 2009, vol. 7, no. 7, pp. 52–57.

    Google Scholar 

  4. Ostrikov, V.N. and Plakhotnikov, O.V., Calibration of hyperspectral data aviation mode according with accompanying ground-based measurements of standard surfaces of observed scenes, Izv., Atmos. Ocean. Phys., 2014a, vol. 50, no. 9, pp. 1016–1019.

    Article  Google Scholar 

  5. Ostrikov, V.N. and Plakhotnikov, O.V., Correlation between hyperspectral imagery preprocessing and the quality of thematic analysis, Izv., Atmos. Ocean. Phys., 2014b, vol. 50, no. 9, pp. 889–891.

    Google Scholar 

  6. Ostrikov, V.N., Plakhotnikov, O.V., and Chapursky, E.I., Assessment of the capabilities of the Resurs-P space hyperspectrometer based on a model simulation of “cubes” using databases of high spatial resolution, Trudy II vserossiiskoi nauchnoi konferentsii “Problemy voenno-prikladnoi geofiziki i kontrolya sostoyaniya prirodnoi sredy” (Proceedings of the II All-Russian Scientific Conference “Problems of Military-Applied Geophysics and Control of the State of the Environment”), Suvorov S.S., Ed., St. Petersburg, VKA im. A.F. Mozhayskogo, 2012, vol. 2, pp. 278–283.

  7. Ostrikov, V.N., Plakhotnikov, O.V., and Kirienko, A.V., Processing of hyperspectral data obtained from aerospace and space carriers, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013, vol. 10, no. 2, pp. 243–251.

    Google Scholar 

  8. Ostrikov, V.N., Plakhotnikov, O.V., and Kirienko, A.V., Assessment of hyperspectrometer characteristics from test surveying results, Kompleksy s bespilotnymi letatelnymi apparatami (Systems with Unmanned Aerial Vehicles), Verba, V.S. and Tatarskii, B.G., Eds., vol. 2: Robototekhnicheskie kompleksy na osnove BLA (UAV-Based Robotic Systems), Moscow: Radiotekhnika, 2016a, pp. 579–587.

  9. Ostrikov, V.N., Plakhotnikov, O.V., Kirienko, A.V., and Smirnov, S.I., Estimation of nitrogen and potassium content in plant biomass for atmospheric corrected hyperspectral remote sensing data, Opt. Atmos. Okeana, 2016b, vol. 29, no. 7, pp. 566–571.

    Google Scholar 

  10. Raikunov, G.G. and Shcherbakov, V.L., et al., Giperspektral’noe distantsionnoe zondirovanie v geologicheskom kartirovanii (Hyperspectral Remote Sensing in Geological Mapping), Moscow: Fizmatlit, 2014.

  11. Schowengerdt, R.A., Remote sensing. Methods and Models of Image Processing, Academic, 2006; Moscow: Tekhnosfera, 2010.

  12. Smirnov, S.I., Mikhailov, V.V., and Ostrikov, V.N., Gradual classification of hyperspectral data in the space of spectral brightness coefficients according to a survey onboard an unmanned aerial vehicle, Kompleksy s bespilotnymi letatelnymi apparatami (Systems with Unmanned Aerial Vehicles), Verba, V.S. and Tatarskii, B.G., Eds., vol. 2: Robototekhnicheskie kompleksy na osnove BLA (UAV-Based Robotic Systems), Moscow: Radiotekhnika, 2016a, pp. 518–528.

  13. Smirnov, S.I., Mikhailov, V.V., Ostrikov, V.N., and Kirienko, A.V., A randomized modification of the method of principal components for data compression and thematic processing in prospective instruments of remote sensing of the Earth, used onboard an unmanned aerial vehicle, Kompleksy s bespilotnymi letatelnymi apparatami (Systems with Unmanned Aerial Vehicles), Verba, V.S. and Tatarskii, B.G., Eds., vol. 2: Robototekhnicheskie kompleksy na osnove BLA (UAV-Based Robotic Systems), Moscow: Radiotekhnika, 2016b, pp. 529–538.

  14. SR-3500 Series Spectroradiometer, SM-3500 Series Spectrometer Operator’s Manual, 2013, Spectral Evolution, Incl. Canal St. Unit B-1, Lawrence, MA 01840, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Ostrikov.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrikov, V.N., Plakhotnikov, O.V. & Kirienko, A.V. Aerial Video-Spectral Survey in the Search for Fragments of Separated Parts of Launch Vehicles on the Ground. Izv. Atmos. Ocean. Phys. 55, 1082–1088 (2019). https://doi.org/10.1134/S0001433819090330

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090330

Keywords:

Navigation