Abstract
The results of 5-year (2013–2017) measurements of organic (OC) and elemental (EC) carbon aerosol fractions observed at the atmospheric monitoring station near St. Petersburg (Petergof, 59.88° N, 29.83° E) are presented. It is shown that the site of observations is under the influence of local pollution sources most of the time (~74%). The median values of carbonaceous aerosol in polluted conditions are 0.46 μg/m3 for ЕС and 2.62 μg/m3 for ОС. On average, the maximum excess of the EC background level is achieved in winter (2.4 times in January). The analysis of the ratio between the OC and the EC in the total carbon indicates the predominantly anthropogenic origin of the aerosol under study. In comparison with the data of similar measurements in Central Siberia, the background summer concentrations of carbonaceous aerosol in Peterhof are significantly lower. Some episodes of increased concentrations of OC and EC are attributed to the intensive accumulation of air pollution coming from the nearby megalopolis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geosci. 1 (4), 221–227 (2008).
J. Hansen, M. Sato, R. Ruedy, A. Lacis, and V. Oinas, “Global warming in the twenty-first century: An alternative scenario,” Proc. Natl. Acad. Sci. U. S. A. 97 (18), 9875–9880 (2000).
M. O. Andreae and P. Merlet, “Emission of trace gases and aerosols from biomass burning,” Global Biogeochem. Cycles 15 (4), 955–966 (2001).
M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature 409 (6821), 695–697 (2001). https://doi.org/10.1038/35055518
M. Z. Jacobson, “Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming,” J. Geophys. Res. 108 (24), 4768 (2002). https://doi.org/10.1029/2001JD001376
W. Maenhaut and M. Claeys, Characterisation and Sources of Carbonaceous Atmospheric Aerosols: Final Report (Belg. Sci. Policy, Brussels, 2007).
L. Husain, V. A. Dutkiewicz, A. Khan, and B. M. Ghauri, “Characterization of carbonaceous aerosols in urban air,” Atmos. Environ. 41 (32), 6872–6883 (2007). https://doi.org/10.1016/j.atmosenv.2007.04.037
M. Hallquist, J. C. Wenger, U. Baltensperger, et al., “The formation, properties and impact of secondary organic aerosol: Current and emerging issues,” Atmos. Chem. Phys. 9 (1), 5155–5236 (2009).
K. Ya. Kondrat’ev, “Forest fires as a component of natural ecodynamics,” Opt. Atmos. Okeana 17 (4), 279–292 (2004).
A. Arneth, N. Unger, M. Kulmala, and M. Andreae, “Clean the air, heat the planet,” Science 326 (5953), 672–673 (2009).
T. C. Bond, D. G. Streets, K. F. Yarber, et al., “A technology-based global inventory of black and organic carbon emissions from combustion,” J. Geophysi. Res.: Atmos. 109, D14203 (2004). https://doi.org/10.1029/2003JD003697
J.-J. Cao, C.-S. Zhu, X.-X. Tie, et al., “Characteristics and sources of carbonaceous aerosols from Shanghai,” Atmos. Chem. Phys. 13 (2), 803–817 (2013). https://doi.org/10.5194/acp-13-803-2013
M. J. Sato, J. E. Hansen, D. Koch, et al., “Global atmospheric black carbon inferred from AERONET,” Proc. Natl. Acad. Sci. U. S. A. 100, 6319–6324 (2003).
C. E. Chung, V. Ramanathan, and D. Decremer, “Observationally constrained estimates of carbonaceous aerosol radiative forcing,” Proc. Natl. Acad. Sci. U. S. A. 109, 11 624–11 629 (2012). https://doi.org/10.1073/pnas.1203707109
Y. Cheng, K. He, F. Duan, et al., “Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications,” Sci. Total. Environ. 468–469, 1103–1111 (2014).
G. Myhre, N. Bellouin, T. F. Berglen, et al., “Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean,” Tellus 59 (1), 115–129.
P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7 (19), 5237–5261 (2007).
K. S. Carslaw, L. A. Lee, C. L. Reddington, et al., “Large contribution of natural aerosols to uncertainty in indirect forcing,” Nature 503 (7), 67–71 (2013).
C. Hoose, J. E. Kristjansson, T. Iversen, et al., “Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect,” Geophys. Res. Lett. 36, 1–5 (2009).
T. L. Anderson, R. J. Charlson, S. E. Schwartz, et al., “Climate forcing by aerosols: A hazy picture,” Science 300 (5622), 1103–1104 (2003). https://doi.org/10.1126/science.1084777
A. S. Safatov, G. A. Buryak, S. E. Olkin, et al., “Analysis of monitoring data on organic/elemental carbon and total protein in ground air layer aerosol in the south of Western Siberia,” Atmos. Oceanic Opt. 27 (2), 164–168 (2014).
G. Grivas, S. Cheristandis, and A. Chaloulakou, “Elemental and organic carbon in the urban environment of Athens. Seasonal and diurnal variations and estimates of secondary organic carbon,” Sci. Total. Environ. 414 (1), 535–545 (2012). https://doi.org/10.1016/j.scitotenv.2011.10.058
G. S. Golitsyn, E. I. Grechko, W. Gengchen, et al., “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11 (2015).
E. F. Mikhailov, S. Yu. Mironova, M. V. Makarova, et al., “Studying seasonal variations in carbonaceous aerosol particles in the atmosphere over Central Siberia,” Izv., Atmos. Ocean. Phys. 51 (4), 423–430 (2015).
E. F. Mikhailov, G. N. Mironov, C. Pöhlker, et al., “Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign,” Atmos. Chem. Phys. 15, 8847–8869 (2015). https://doi.org/10.5194/acp15-8847-2015
E. F. Mikhailov, S. Mironova, G. Mironov, et al., “Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia,” Atmo-s. Chem. Phys. 17, 14 365–14 392 (2017). https://doi.org/10.5194/acp-17-14365-2017
M. E. Birch and R. A. Cary, “Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust,” Aerosol Sci. Technol. 25 (3), 221–241 (1996).
M. E. Birch, “Analysis of carbonaceous aerosols: Interlaboratory comparison,” Analyst 123 (5), 851–857 (1998).
K. A. Volkova, A. V. Poberovsky, Yu. M. Timofeev, et al., “Aerosol optical characteristics retrieved from CIMEL sun photometer measurements (AERONET) near St. Petersburg,” Atmos. Oceanic Opt. 31 (6), 635–641 (2018).
A. F. Ruckstuhl, S. Henne, S. Reimann, et al., “Robust extraction of baseline signal of atmospheric trace species using local regression,” Atmos. Meas. Tech. 5 (11), 2613–2624 (2012). https://doi.org/10.5194/amt-5-2613-2012
M. O. Andreae, “Aerosols before pollution,” Science 315, 50–51 (2007).
D. S. Hamilton, L. A. Lee, K. J. Pringle, et al., “Occurrence of pristine aerosol environments on a polluted planet,” P. Natl. Acad. Sci. U. S. A. 111 (52), 18 466–18 471 (2014). https://doi.org/10.1073/pnas.1415440111
T. Novakov, S. Menon, T. W. Kirchstetter, et al., “Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing,” J. Geophys. Res. 110, D21205 (2005). https://doi.org/10.1029/2005JD005977
R. R. Draxler and G. D. Hess, “An overview of the HYSPLI-T-4 modelling system for trajectories, dispersion and deposition,” Aust. Meteorol. Mag. 47 (4), 295–308 (1998).
A. V. Poberovskii, A. V. Shashkin, D. V. Ionov, and Yu. M. Timofeev, “NO2 content variations near St. Petersburg as inferred from ground-based and satellite measurements of scattered solar radiation,” Izv., Atmos. Ocean. Phys. 43 (4), 505–513 (2007).
D. Ionov and A. Poberovskii, “Quantification of NOx emission from St. Petersburg (Russia) using mobile DOAS measurements around entire city,” Int. J. Remote Sens. 36 (9), 2486–2502 (2015). https://doi.org/10.1080/01431161.2015.1042123
D. V. Ionov and A. V. Poberovskii, “Integral emission of nitrogen oxides from the territory of St. Petersburg based on the data of mobile measurements and numerical simulation results,” Izv., Atmos. Ocean. Phys. 53 (2), 204–212 (2017).
D. Ionov and A. Poberovskii, “Observations of urban NOx plume dispersion using the mobile and satellite DOAS measurements around the megacity of St. Petersburg (Russia),” Int. J. Remote Sens. 40 (2), 719–733 (2019). https://doi.org/10.1080/01431161.2018.1519274
Report on the Environmental State in St. Petersburg for 2017, Ed. by I. A. Serebritskii (Sezam-print, St. Petersburg, 2018) [in Russian].
ACKNOWLEDGMENTS
We are grateful to G.N. Mironov and A.B. Pavlov for their participation and assistance in work.
Funding
This work was supported by the Russian Foundation for Basic Research, project nos. 16-05-00718 and 18-05- 00011; the Russian Science Foundation, project no. 18-17-00076; and the Geomodel resource center at St. Petersburg State University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by V. Selikhanovich
Rights and permissions
About this article
Cite this article
Vlasenko, S.S., Volkova, K.A., Ionov, D.V. et al. Variation of Carboneceous Atmospheric Aerosol Near St. Petersburg. Izv. Atmos. Ocean. Phys. 55, 619–627 (2019). https://doi.org/10.1134/S0001433819060161
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001433819060161