Skip to main content
Log in

Variation of Carboneceous Atmospheric Aerosol Near St. Petersburg

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of 5-year (2013–2017) measurements of organic (OC) and elemental (EC) carbon aerosol fractions observed at the atmospheric monitoring station near St. Petersburg (Petergof, 59.88° N, 29.83° E) are presented. It is shown that the site of observations is under the influence of local pollution sources most of the time (~74%). The median values of carbonaceous aerosol in polluted conditions are 0.46 μg/m3 for ЕС and 2.62 μg/m3 for ОС. On average, the maximum excess of the EC background level is achieved in winter (2.4 times in January). The analysis of the ratio between the OC and the EC in the total carbon indicates the predominantly anthropogenic origin of the aerosol under study. In comparison with the data of similar measurements in Central Siberia, the background summer concentrations of carbonaceous aerosol in Peterhof are significantly lower. Some episodes of increased concentrations of OC and EC are attributed to the intensive accumulation of air pollution coming from the nearby megalopolis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geosci. 1 (4), 221–227 (2008).

    Article  Google Scholar 

  2. J. Hansen, M. Sato, R. Ruedy, A. Lacis, and V. Oinas, “Global warming in the twenty-first century: An alternative scenario,” Proc. Natl. Acad. Sci. U. S. A. 97 (18), 9875–9880 (2000).

    Article  Google Scholar 

  3. M. O. Andreae and P. Merlet, “Emission of trace gases and aerosols from biomass burning,” Global Biogeochem. Cycles 15 (4), 955–966 (2001).

    Article  Google Scholar 

  4. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature 409 (6821), 695–697 (2001). https://doi.org/10.1038/35055518

    Article  Google Scholar 

  5. M. Z. Jacobson, “Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming,” J. Geophys. Res. 108 (24), 4768 (2002). https://doi.org/10.1029/2001JD001376

    Article  Google Scholar 

  6. W. Maenhaut and M. Claeys, Characterisation and Sources of Carbonaceous Atmospheric Aerosols: Final Report (Belg. Sci. Policy, Brussels, 2007).

  7. L. Husain, V. A. Dutkiewicz, A. Khan, and B. M. Ghauri, “Characterization of carbonaceous aerosols in urban air,” Atmos. Environ. 41 (32), 6872–6883 (2007). https://doi.org/10.1016/j.atmosenv.2007.04.037

    Article  Google Scholar 

  8. M. Hallquist, J. C. Wenger, U. Baltensperger, et al., “The formation, properties and impact of secondary organic aerosol: Current and emerging issues,” Atmos. Chem. Phys. 9 (1), 5155–5236 (2009).

    Article  Google Scholar 

  9. K. Ya. Kondrat’ev, “Forest fires as a component of natural ecodynamics,” Opt. Atmos. Okeana 17 (4), 279–292 (2004).

    Google Scholar 

  10. A. Arneth, N. Unger, M. Kulmala, and M. Andreae, “Clean the air, heat the planet,” Science 326 (5953), 672–673 (2009).

    Article  Google Scholar 

  11. T. C. Bond, D. G. Streets, K. F. Yarber, et al., “A technology-based global inventory of black and organic carbon emissions from combustion,” J. Geophysi. Res.: Atmos. 109, D14203 (2004). https://doi.org/10.1029/2003JD003697

    Article  Google Scholar 

  12. J.-J. Cao, C.-S. Zhu, X.-X. Tie, et al., “Characteristics and sources of carbonaceous aerosols from Shanghai,” Atmos. Chem. Phys. 13 (2), 803–817 (2013). https://doi.org/10.5194/acp-13-803-2013

    Article  Google Scholar 

  13. M. J. Sato, J. E. Hansen, D. Koch, et al., “Global atmospheric black carbon inferred from AERONET,” Proc. Natl. Acad. Sci. U. S. A. 100, 6319–6324 (2003).

    Article  Google Scholar 

  14. C. E. Chung, V. Ramanathan, and D. Decremer, “Observationally constrained estimates of carbonaceous aerosol radiative forcing,” Proc. Natl. Acad. Sci. U. S. A. 109, 11 624–11 629 (2012). https://doi.org/10.1073/pnas.1203707109

    Article  Google Scholar 

  15. Y. Cheng, K. He, F. Duan, et al., “Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications,” Sci. Total. Environ. 468–469, 1103–1111 (2014).

    Article  Google Scholar 

  16. G. Myhre, N. Bellouin, T. F. Berglen, et al., “Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean,” Tellus 59 (1), 115–129.

  17. P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7 (19), 5237–5261 (2007).

    Article  Google Scholar 

  18. K. S. Carslaw, L. A. Lee, C. L. Reddington, et al., “Large contribution of natural aerosols to uncertainty in indirect forcing,” Nature 503 (7), 67–71 (2013).

    Article  Google Scholar 

  19. C. Hoose, J. E. Kristjansson, T. Iversen, et al., “Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect,” Geophys. Res. Lett. 36, 1–5 (2009).

    Article  Google Scholar 

  20. T. L. Anderson, R. J. Charlson, S. E. Schwartz, et al., “Climate forcing by aerosols: A hazy picture,” Science 300 (5622), 1103–1104 (2003). https://doi.org/10.1126/science.1084777

    Article  Google Scholar 

  21. A. S. Safatov, G. A. Buryak, S. E. Olkin, et al., “Analysis of monitoring data on organic/elemental carbon and total protein in ground air layer aerosol in the south of Western Siberia,” Atmos. Oceanic Opt. 27 (2), 164–168 (2014).

    Article  Google Scholar 

  22. G. Grivas, S. Cheristandis, and A. Chaloulakou, “Elemental and organic carbon in the urban environment of Athens. Seasonal and diurnal variations and estimates of secondary organic carbon,” Sci. Total. Environ. 414 (1), 535–545 (2012). https://doi.org/10.1016/j.scitotenv.2011.10.058

    Article  Google Scholar 

  23. G. S. Golitsyn, E. I. Grechko, W. Gengchen, et al., “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11 (2015).

    Article  Google Scholar 

  24. E. F. Mikhailov, S. Yu. Mironova, M. V. Makarova, et al., “Studying seasonal variations in carbonaceous aerosol particles in the atmosphere over Central Siberia,” Izv., Atmos. Ocean. Phys. 51 (4), 423–430 (2015).

    Article  Google Scholar 

  25. E. F. Mikhailov, G. N. Mironov, C. Pöhlker, et al., “Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign,” Atmos. Chem. Phys. 15, 8847–8869 (2015). https://doi.org/10.5194/acp15-8847-2015

    Article  Google Scholar 

  26. E. F. Mikhailov, S. Mironova, G. Mironov, et al., “Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia,” Atmo-s. Chem. Phys. 17, 14 365–14 392 (2017). https://doi.org/10.5194/acp-17-14365-2017

    Article  Google Scholar 

  27. M. E. Birch and R. A. Cary, “Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust,” Aerosol Sci. Technol. 25 (3), 221–241 (1996).

    Article  Google Scholar 

  28. M. E. Birch, “Analysis of carbonaceous aerosols: Interlaboratory comparison,” Analyst 123 (5), 851–857 (1998).

    Article  Google Scholar 

  29. K. A. Volkova, A. V. Poberovsky, Yu. M. Timofeev, et al., “Aerosol optical characteristics retrieved from CIMEL sun photometer measurements (AERONET) near St. Petersburg,” Atmos. Oceanic Opt. 31 (6), 635–641 (2018).

    Article  Google Scholar 

  30. A. F. Ruckstuhl, S. Henne, S. Reimann, et al., “Robust extraction of baseline signal of atmospheric trace species using local regression,” Atmos. Meas. Tech. 5 (11), 2613–2624 (2012). https://doi.org/10.5194/amt-5-2613-2012

    Article  Google Scholar 

  31. M. O. Andreae, “Aerosols before pollution,” Science 315, 50–51 (2007).

    Article  Google Scholar 

  32. D. S. Hamilton, L. A. Lee, K. J. Pringle, et al., “Occurrence of pristine aerosol environments on a polluted planet,” P. Natl. Acad. Sci. U. S. A. 111 (52), 18 466–18 471 (2014). https://doi.org/10.1073/pnas.1415440111

    Article  Google Scholar 

  33. T. Novakov, S. Menon, T. W. Kirchstetter, et al., “Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing,” J. Geophys. Res. 110, D21205 (2005). https://doi.org/10.1029/2005JD005977

    Article  Google Scholar 

  34. R. R. Draxler and G. D. Hess, “An overview of the HYSPLI-T-4 modelling system for trajectories, dispersion and deposition,” Aust. Meteorol. Mag. 47 (4), 295–308 (1998).

    Google Scholar 

  35. A. V. Poberovskii, A. V. Shashkin, D. V. Ionov, and Yu. M. Timofeev, “NO2 content variations near St. Petersburg as inferred from ground-based and satellite measurements of scattered solar radiation,” Izv., Atmos. Ocean. Phys. 43 (4), 505–513 (2007).

    Article  Google Scholar 

  36. D. Ionov and A. Poberovskii, “Quantification of NOx emission from St. Petersburg (Russia) using mobile DOAS measurements around entire city,” Int. J. Remote Sens. 36 (9), 2486–2502 (2015). https://doi.org/10.1080/01431161.2015.1042123

    Article  Google Scholar 

  37. D. V. Ionov and A. V. Poberovskii, “Integral emission of nitrogen oxides from the territory of St. Petersburg based on the data of mobile measurements and numerical simulation results,” Izv., Atmos. Ocean. Phys. 53 (2), 204–212 (2017).

    Article  Google Scholar 

  38. D. Ionov and A. Poberovskii, “Observations of urban NOx plume dispersion using the mobile and satellite DOAS measurements around the megacity of St. Petersburg (Russia),” Int. J. Remote Sens. 40 (2), 719–733 (2019). https://doi.org/10.1080/01431161.2018.1519274

    Article  Google Scholar 

  39. Report on the Environmental State in St. Petersburg for 2017, Ed. by I. A. Serebritskii (Sezam-print, St. Petersburg, 2018) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to G.N. Mironov and A.B. Pavlov for their participation and assistance in work.

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 16-05-00718 and 18-05- 00011; the Russian Science Foundation, project no. 18-17-00076; and the Geomodel resource center at St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Vlasenko.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, S.S., Volkova, K.A., Ionov, D.V. et al. Variation of Carboneceous Atmospheric Aerosol Near St. Petersburg. Izv. Atmos. Ocean. Phys. 55, 619–627 (2019). https://doi.org/10.1134/S0001433819060161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819060161

Keywords:

Navigation