Skip to main content
Log in

Estimating the Influence of Thermal Inertia and Feedbacks in the Atmosphere–Ocean System on the Variability of the Global Surface Air Temperature

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The modern climate of our planet is characterized not only by a trend caused by an increase in the concentration of greenhouse gases in the atmosphere, but also by fluctuations covering a wide range of frequencies and scales. The global climate variability based on the modeling results of the Coupled Model Intercomparison Project Phase 5 of the World Climate Research Program is characterized by significant differences between models. In particular, for the decadal-scale anomalies of the global and hemispheric temperatures, the standard deviation differences between models are as high as fourfold. However, in contrast to the differences in climate sensitivity between models, the causes of a wide range of the estimates of climate variability are still not entirely understood. The research in this paper is based on two-component energy-balance stochastic model. We analyze the sensitivity of interannual and interdecade variability of the mean global surface temperature (GST) to the feedback and thermal inertia of the atmosphere–ocean system under the assumption that the main external forcing factor is random fluctuations of the radiation balance at the upper boundary of the atmosphere. We estimate the influence of thermal inertia and feedback in the climate system on the interannual and interdecade variability (variance) of the GST and the spectrum of its fluctuations using the absolute and relative sensitivity functions derived in the research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Rozenwasser and R. Yusupov, Sensitivity of Automatic Control Systems (CRC, Boca Raton, FL, 2000).

    Google Scholar 

  2. D. V. Gaskarov, V. B. Kiselev, S. A. Soldatenko, et al., Introduction to Geophysical Cybernetics, Ed. by R. M. Yusupov (SPbGU, St. Petersburg, 1998) [in Russian].

  3. S. Soldatenko, “Weather and climate manipulation as an optimal control for adaptive dynamical systems,” Complexity 2017, 4615072 (2017).

    Article  Google Scholar 

  4. G. I. Marchuk and Yu. N. Skiba, “The role of adjoint functions in studying the sensitivity of the model of thermal influence of the atmosphere and ocean to initial data variations,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 26 (5), 451–460 (1990).

    Google Scholar 

  5. V. P. Dymnikov, E. M. Volodin, V. Ya. Galin, et. al., “Sensitivity of a climatic system to small external forcings,” Meteorol. Hydrol., No. 4, 77–91 (2004).

  6. V. V. Penenko, “Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment,” Numer. Anal. Appl. 2 (4), 341–351 (2009).

    Article  Google Scholar 

  7. S. Soldatenko and R. Yusupov, “Parametric sensitivity in geoengineering and controlling the weather and climate,” WSEAS Trans. Environ. Dev. 11, 289–301 (2015).

    Google Scholar 

  8. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  9. G. Myhre, E. J. Highwood, K. P. Shine, and F. Stordal, “New estimates of radiative forcing due to well mixed greenhouse gases,” Geophys. Res. Lett. 25, 2715–2718 (1998).

    Article  Google Scholar 

  10. G. D. Myhre, F.-M. Shindell, W. Breon, et al., “Anthropogenic and natural radiative forcing supplementary material,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013), pp. 659–740.

    Google Scholar 

  11. P. M. Cox, C. Huntingford, and M. S. Williamson, “Emergent constraint on equilibrium climate sensitivity from global temperature variability,” Nature 553, 319–322 (2018).

    Article  Google Scholar 

  12. S. Bony, R. A. Colman, V. Kattsov, et al., “How well do we understand and evaluate climate change feedback processes?,” J. Clim. 19, 3445–3482 (2006).

    Article  Google Scholar 

  13. O. Boucher, D. Randall, P. Artaxo, et al., “Clouds and aerosols,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013), pp. 571–657.

    Google Scholar 

  14. M. Collins, R. Knutti, J. Arblaster, et al., “Long-term climate change: Projections, commitments and irreversibility,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013), pp. 1029–1136.

    Google Scholar 

  15. G. Flato, J. Marotzke, B. Abiodun, et al., “Evaluation of climate models,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013), pp. 741–866.

    Google Scholar 

  16. N. G. Loeb, W. Su, and S. Kato, “Understanding climate feedbacks and sensitivity using observations of Earth’s energy budget,” Curr. Clim. Change Rep. 2, 170–178 (2016).

    Article  Google Scholar 

  17. B. Soden and I. M. Held, “An assessment of climate feedbacks in coupled ocean–atmosphere models,” J. Clim. 19, 3354–3360 (2006).

    Article  Google Scholar 

  18. J. M. Gregory, W. J. Ingram, M. A. Palmer, et al., “A new method for diagnosing radiative forcing and climate sensitivity,” Geophys. Res. Lett. 31, L03205 (2004).

    Google Scholar 

  19. J. M. Gregory and T. Andrews, “Variation in climate sensitivity and feedback parameters,” Geophys. Res. Lett. 43, 3911–3920 (2016).

    Article  Google Scholar 

  20. J. Hansen, A. Lacis, D. Rind, et al., “Climate sensitivity: Analysis of feedback mechanisms,” in Climate Processes and Climate Sensitivity, Ed. by J. E. Hansen and T. Takahashi (Am. Geophys. Union, 1984), vol. 5, pp. 130–163.

    Book  Google Scholar 

  21. H. Karper and H. Engler, Mathematics and Climate (SIAM, Philadelphia, 2013).

    Book  Google Scholar 

  22. G. Roe, “Feedbacks, timescales, and seeing red,” Annu. Rev. Earth Planet. Sci. 37, 93–115 (2009).

    Article  Google Scholar 

  23. B. Kirtman, S. B. Power, J. A. Adedoyin, et al., “Near-term climate change: Projections and predictability,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013), pp. 953–1028.

    Google Scholar 

  24. K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  25. R. A. Colman and S. B. Power, “What can decadal variability tell us about climate feedbacks and sensitivity?,” Clim. Dyn. 51, 3815–3828 (2018).

    Article  Google Scholar 

  26. S. Soldatenko and R. Colman, “Climate variability from annual to multi-decadal timescales in a two-layer stochastic energy balance model: Analytic solutions and implications for general circulation models,” Tellus A 71, 1–15 (2019).

    Article  Google Scholar 

  27. H. von Storch and F. W. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, New York, 2001).

    Google Scholar 

  28. R. A. Colman and S. B. Power, “Atmospheric feedbacks under unperturbed variability and transient climate change,” Clim. Dyn. 34, 919–934 (2010).

    Article  Google Scholar 

  29. H. Bellenger, E. Guilyardi, J. Leloup, et al., “ENSO representation in climate models: From CMIP3 to CMIP5,” Clim. Dyn. 42, 1999–2018 (2014).

    Article  Google Scholar 

  30. K. L. Ricke and K. Caldeira, “Maximum warming occurs about one decade after a carbon dioxide emission,” Environ. Res. Lett. 9, 124 002 (2014).

    Article  Google Scholar 

  31. Z. Liu, “Dynamics of interdecadal climate variability: A historical perspective,” J. Clim. 25, 1963–1995 (2012).

    Article  Google Scholar 

  32. V. A. Semenov, “Kolebaniya sovremennogo klimata, vyzvannye obratnymi svyazyami a sisteme atmosfera - arkticheskie l’dy–okean,” Fundam. Prikl. Klimatol. 1, 232–248 (2015).

    Google Scholar 

  33. S. B. Power and F. P. D. Delage, “El Niño–Southern Oscillation and associated climatic conditions around the world during the latter half of the twenty-first century,” J. Clim 31, 6189–6207 (2018).

    Article  Google Scholar 

  34. E. Middlemas and A. Clement, “Spatial patterns and frequency of unforced decadal scale changes in global mean surface temperature in climate models,” J. Clim 29, 6245–6257 (2016).

    Article  Google Scholar 

  35. K. Hasselmann, “Stochastic climate models. Part I. Theory,” Tellus 28, 473–485 (1976).

    Article  Google Scholar 

  36. J. M. Gregory, “Vertical heat transport in the ocean and their effect on time-dependent climate change,” Clim. Dyn. 16, 501–515 (2000).

    Article  Google Scholar 

  37. I. M. Held, M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, “Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing,” J. Clim. 23, 2418–2427 (2010).

    Article  Google Scholar 

  38. O. Geoffroy, D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, “Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments,” J. Clim. 26, 1841–1857 (2012).

    Article  Google Scholar 

  39. A. S. Ginzburg and P. F. Demchenko, “Air temperature and energy consumption feedbacks within urbanized areas,” Izv., Atmos. Ocean. Phys. 53 (5), 487–494 (2017).

    Article  Google Scholar 

  40. P. F. Demchenko and A. V. Kislov, Stochastic Dynamics of Natural Objects. Brownian Motion and Geophysical Examples (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  41. S. A. Soldatenko and R. M. Yusupov, “Optimal control of aerosol emissions into the stratosphere to stabilize the Earth’s climate,” Izv., Atmos. Ocean. Phys. 54 (5), 480–486 (2018).

    Article  Google Scholar 

  42. S. A. Soldatenko and R. M. Yusupov, “Sensitivities of a zero-dimensional climate model and its feedbacks in the context of the problem of weather and climate control,” Tr. SPIIRAN 52, 5–31 (2017).

    Google Scholar 

  43. C. E. Leith, “The standard error of time-average estimates of climate means,” J. Appl. Meteorol. 12, 1066–1069 (1973).

    Article  Google Scholar 

  44. P. F. Demchenko and V. A. Semenov, “Estimation of uncertainty in surface air temperature climatic trends related to the internal dynamics of the atmosphere,” Dokl. Earth Sci. 476 (1), 1105–1108 (2017).

    Article  Google Scholar 

  45. S. Heinz, Mathematical Modelling (Springer, Berlin–Heidelberg, 2011).

    Book  Google Scholar 

  46. E. S. Venttsel’, Theory of Probabilities (Vysshaya shkola, Moscow, 1999) [in Russian].

  47. S. E. Schwartz, “Heat capacity, time constant, and sensitivity of Earth’s climate system,” J. Geophys. Res. 112, DS24S05 (2007).

  48. A. Hall and S. Manabe, “Can local linear stochastic theory explain sea surface temperature and salinity variability?,” Clim. Dyn 13, 167–180 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank P.F. Demchenko for constructive and very useful discussions during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Soldatenko.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatenko, S.A., Yusupov, R.M. Estimating the Influence of Thermal Inertia and Feedbacks in the Atmosphere–Ocean System on the Variability of the Global Surface Air Temperature. Izv. Atmos. Ocean. Phys. 55, 591–601 (2019). https://doi.org/10.1134/S000143381906015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381906015X

Keywords:

Navigation