Skip to main content
Log in

Sensitivity of the Ocean Circulation Model to the k-ω Vertical Turbulence Parametrization

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An ocean general circulation model (OGCM) of the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences with embedded k–ω vertical turbulent exchange model is developed based on the equations for turbulence kinetic energy k and energy dissipation frequency ω. The solution of the k–ω model equations depends on the frequencies of buoyancy and velocity shift simulated by the OGCM, and the coefficients of vertical turbulence depend on k and ω. The numerical algorithms of both models are based on the method of splitting by the physical processes. The k-ω model equations are split into two stages describing the three-dimensional transport-diffusion of the turbulence kinetic energy k and frequency ω and their local generation-dissipation. The system of ordinary differential equations, arising at the second stage, is solved analytically, which ensures algorithm efficiency. The analytical solution of the equation is also obtained for the vertical turbulence coefficient. The model is used to study the sensitivity of the model circulation of the North Atlantic–Arctic Ocean to variations in the parameters of vertical turbulence. The experiments show that varying the coefficients of the analytical solution of the k–ω model can improve the adequacy of the simulation. The preliminary comparison of the features of the k–ω and k–ε turbulence models is presented using the method of splitting when they are employed in the OGCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. B. Zalesny and A. V. Gusev, “Mathematical model of the World Ocean dynamics with algorithms of variational assimilation of temperature and salinity fields,” Russ. J. Numer. Anal. Math. Modell. 24 (2), 171–191 (2009).

    Article  Google Scholar 

  2. V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, A. V. Bagno, F. V. Gusev, N. A. Diansky, S. N. Moshonkin, E. M. Volodin, and R. Tamsalu, “Numerical modeling of the large-scale ocean circulation on the base of multicomponent splitting method,” Russ. J. Numer. Anal. Math. Modell. 25 (6), 581–609 (2010).

    Article  Google Scholar 

  3. E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations,” Izv., Atmos. Ocean. Phys. 46 (4), 414–431 (2010).

    Article  Google Scholar 

  4. V. B. Zalesny, N. A. Diansky, V. V. Fomin, S. N. Moshonkin, and S. G. Demyshev, “Numerical model of the circulation of the Black Sea and the Sea of Azov,” Russ. J. Numer. Anal. Math. Modell. 27 (1), 95–111 (2012).

    Article  Google Scholar 

  5. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).

    Article  Google Scholar 

  6. V. L. Perov, “Calculation of turbulent mixing coefficients on the basis of the spectral algorithm and its use in the COSMO-RU model,” Tr. Gidromettsentra RF, No. 347, 81–94 (2012).

    Google Scholar 

  7. J. C. Warner, C. R. Sherwood, H. G. Arango, and R. P. Signell, “Performance of four turbulence closure models implemented using a generic length scale method,” Ocean Model. 8 (1–2), 81–113 (2005).

    Article  Google Scholar 

  8. W. G. Large, J. C. McWilliams, and S. C. Doney, “Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization,” Rev. Geophys. 32 (4), 363–403 (1994).

    Article  Google Scholar 

  9. V. M. Canuto, A. M. Howard, Y. Cheng, et al., “Ocean turbulence, III: New GISS vertical mixing scheme,” Ocean Modell. 34 (3), 70–91 (2010).

    Article  Google Scholar 

  10. S. N. Moshonkin, V. B. Zalesny, and A. V. Gusev, “A splitting turbulence algorithm for mixing parameterization in the ocean circulation model, IOP Conf. Ser.: Earth Environ. Sci. 231, 012038 (2019). https://doi.org/10.1088/1755-1315/231/1/012038

    Article  Google Scholar 

  11. M. M. Zaslavskii, V. B. Zalesny, I. M. Kabatchenko, and R. Tamsalu, “On the self-adjusted description of the atmospheric boundary layer, wind waves, and sea currents,” Oceanology (Engl. Transl.) 46 (2), 159–169 (2006).

    Article  Google Scholar 

  12. Y. Noh, H. Ok, E. Lee, et al., “Parameterization of Langmuir circulation in the ocean mixed layer model using LES and its application to the OGCM,” J. Phys. Oceanogr. 46 (1), 57–78 (2016).

    Article  Google Scholar 

  13. S. N. Moshonkin, V. B. Zalesny, and A. V. Gusev, “Simulation of the Arctic–North Atlantic Ocean circulation with a two-equation k-omega turbulence parameterization,” J. Mar. Sci. Eng. 95 (6), 1–23 (2018). https://doi.org/10.3390/jmse6030095

    Article  Google Scholar 

  14. S. N. Moshonkin, V. B. Zalesny and A. V. Gusev, “Algorithm of the k–ω turbulence equations solution for the ocean general circulation model,” Izv., Atmos. Ocean. Phys. 54 (5), 495–506 (2018).

    Article  Google Scholar 

  15. G. I. Marchuk and V. B. Zalesny, “Modeling of the World ocean circulation with the four-dimensional assimilation of temperature and salinity fields,” Izv., A-tmos. Ocean. Phys. 48 (1), 15–29 (2012).

    Article  Google Scholar 

  16. V. B. Zalesny, V. I. Agoshkov, V. P. Shutyaev, F. Le Dimet, and B. O. Ivchenko, “Numerical modeling of ocean hydrodynamics with variational assimilation of observational data,” Izv., Atmos. Ocean. Phys. 52 (4), 431–442 (2016).

    Article  Google Scholar 

  17. N. G. Yakovlev, “Coupled model of ocean general circulation and sea ice evolution in the Arctic Ocean,” Izv., Atmos. Ocean. Phys. 39 (3), 355–368 (2003).

    Google Scholar 

  18. H. Burchard, K. Bolding, and M. Villarreal, GOTM, A General Ocean Turbulence Model: Theory, Implementation and Test Cases (Space Applications Institute, 1999). https://books.google.ru/books?id=zsJUHAAACAAJ.

  19. B. Blanke and P. Delecluse, “Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics,” J. Phys. Oceanogr. 23 (7), 1363–1388 (1993).

    Article  Google Scholar 

  20. G. Mellor and T. Yamada, “A hierarchy of turbulence closure models for planetary boundary layers,” J. Atmos. Sci. 31 (7), 1791–1806 (1974).

    Article  Google Scholar 

  21. W. G. Large and S. G. Yeager, “The global climatology of an interannually varying air–sea flux,” Clim. Dyn. 33, 341–364 (2009).

    Article  Google Scholar 

  22. C. de Boyer Montégut, G. Madec, A. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res.: Oceans 109 (C12) (2004). https://doi.org/10.1029/2004JC002378

  23. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2009, Vol. 1: Temperature, Ed. by S. Levitus, NOAA Atlas NESDIS 68 (U.S. Government Printing Office, Washington D.C., 2010).

  24. J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 1: Salinity, Ed. by S. Levitus, NOAA Atlas NESDIS 69 (U.S. Government Printing Office, Washington D.C., 2010).

Download references

Funding

This work was performed at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, with support from the Russian Science Foundation, grant no. 18-11-00163, and from the Russian Foundation for Basic Research, grant no. 18-05-00177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Moshonkin.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalesny, V.B., Moshonkin, S.N. Sensitivity of the Ocean Circulation Model to the k-ω Vertical Turbulence Parametrization. Izv. Atmos. Ocean. Phys. 55, 470–479 (2019). https://doi.org/10.1134/S0001433819050141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819050141

Keywords:

Navigation