Skip to main content
Log in

On Pressure Perturbations Caused by a Moving Heat Source of Frontal Type (Hydrostatic Mode)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

The problem of surface-pressure perturbations caused by a moving nonstationary heat source (localized along one horizontal coordinate and periodic along the other) is considered. Pressure perturbations are associated with internal gravity waves (IGWs). It is shown that, during the source movement throughout a finite-height atmospheric layer (atmospheric waveguide), when a discrete set of vertical IGW modes is excited, there may be three types of time surface-pressure variations at a fixed observation point. A time amplitude-modulated signal; a Doppler frequency-modulated signal; and a signal that occurs only after the passage of the source correspond to these three types, respectively. Each of these types is implemented for certain source oscillation frequencies and Mach numbers (ratio between the movement rate of source and the phase velocity of IGWs). At \(M < 1\), a nonstationary source always excites wave precursors—disturbances observed before the source arrival. The movement of the source in a semi-infinite atmosphere leads to additional generation of waves that transport energy into the upper atmospheric layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. H. Georges, “Infrasound from convective storms,” Rev. Geophys. Space Phys. 11 (3), 571–593 (1973).

    Article  Google Scholar 

  2. Natural Hazards in Russia, Vol. 5: Hydrometeorological Hazards, Ed. by G. S. Golitsyn and A. A. Vasil’ev (Kruk, Moscow, 2001) [in Russian].

    Google Scholar 

  3. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 1–64 (2003).

    Article  Google Scholar 

  4. D. A. Schecter, M. Nicholls, J. Persing, A. J. Bedard, and R. A. Pielke, “Infrasound emitted by tornado-like vortices: Basic theory and a numerical comparison to the acoustic radiation of a single-cell thunderstorm,” J. Atmos. Sci. 65, 685–713 (2008).

    Article  Google Scholar 

  5. R. Plougonven and F. Zhang, “Internal gravity waves from atmospheric jets and fronts,” Rev. Geophys. 52, 33–76 (2014).

    Article  Google Scholar 

  6. S. N. Kulichkov, S. D. Danilov, A. I. Grachev, A. I. Otrezov, A. I. Svertilov, and I. P. Chunchuzov, Preprint (Institute of Atmospheric Physics, USSR Academy of Sciences, Moscow, 1992).

  7. A. I. Grachev, S. D. Danilov, S. N. Kulichkov, and A. I. Svertilov, “Main characteristics of internal gravity waves in the lower atmosphere due to convective storms,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 10 (6), 759–767 (1994).

    Google Scholar 

  8. A. I. Grachev, S. N. Kulichkov, and A. I. Otrezov, “Spectral properties of internal gravity waves from thunderstorms,” Izv., Atmos. Ocean. Phys. 33 (5), 583–591 (1997).

    Google Scholar 

  9. S. N. Kulichkov, I. P. Chunchuzov, O. E. Popov, V. G. Perepelkin, E. V. Golikova, G. A. Bush, I. A. Repina, N. D. Tsybul’skaya, G. I. Gorchakov, and O. G. Chkhetiani, “Influence of internal gravity waves on the concentration of pollutants during the hurricane of May 29, 2017, in Moscow,” Turbulence, Dynamics of the Atmosphere and Climate, Ed. by G. S. Golitsyn, I. I. Mokhov, S. N. Kulichkov, O. G. Chkhetiani, and I. A. Repins (Fizmatkniga, Moscow, 2018), pp. 541–550 [in Russian].

    Google Scholar 

  10. S. N. Kulichkov, N. D. Tsybulskaya, I. P. Chunchuzov, V. A. Gordin, Ph. L. Bykov, A. I. Chulichkov, V. G. Perepelkin, G. A. Bush, and E. V. Golikova, “Studying internal gravity waves generated by atmospheric fronts over the Moscow region,” 53 (4), 402–411 (2017).

  11. G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

  12. P. N. Svirkunov and M. V. Kalashnik, “Phase patterns of dispersive waves from moving localized sources,” Phys.-Usp. 57 (1), 80–91 (2014).

    Article  Google Scholar 

  13. V. V. Bulatov and Yu. V. Vladimirov, Waves in Stratified Media (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  14. V. V. Bulatov and Yu. V. Vladimirov, “Internal gravity waves excited by a pulsating source of perturbations,” Fluid Dyn. 50 (6), 741–747.

    Article  Google Scholar 

  15. A. Gill, Atmosphere–Ocean Dynamics (Academic, London, 1982; Mir, Moscow, 1986).

  16. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  17. L. D. Landau and E. M. Lifshits, Hydrodynamics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  18. L. T. Matveev, A Course of General Meteorology. Atmospheric Physics (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  19. N. N. Romanova and I. G. Yakushkin, “Internal gravity waves in the atmosphere and source of their generation (review),” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 31 (2), 163–187 (1995).

    Google Scholar 

  20. M. V. Kalashnik and O. G. Chkhetiani, “Generation of gravity waves by singular potential-vorticity disturbances in shear flows,” J. Atmos. Sci. 74, 293–307 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank L.Kh. Ingel’ for his helpful discussions of the results.

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 18-05-00576, Sections 2 and 5) and Program No. 56 (Sections 3and 4) of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Kalashnik or S. N. Kulichkov.

Additional information

Translated by B. Dribinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnik, M.V., Kulichkov, S.N. On Pressure Perturbations Caused by a Moving Heat Source of Frontal Type (Hydrostatic Mode). Izv. Atmos. Ocean. Phys. 55, 423–431 (2019). https://doi.org/10.1134/S0001433819050098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819050098

Keywords:

Navigation