Skip to main content
Log in

Influence of North Atlantic Oscillation on Moscow Climate Continentality

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The natural variability of regional climatic conditions poses certain difficulties in detecting global climate change at a local scale. The question about the ratio between the contribution of human forcing, induced by the increase in atmospheric carbon dioxide concentration, and the contribution of natural variability in atmospheric and oceanic circulation arises in each particular case. The purpose of the study reported in this article was to evaluate the contribution of the North Atlantic Oscillation to the decrease in the climate continentality of Moscow during the period of 1951–2000. The results show that a significant part of the decrease in continentality could be attributed to the increase in the North Atlantic Oscillation index observed during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. A. Aleksandrov, A. S. Ginzburg, and G. S. Golitsyn, “Dynamics of the Gorchinsky index of continentality under climate changes,” in Turbulence, Dynamics of the Atmosphere and Climate (Fizmatkniga, Moscow, 2018), pp. 168–171 [in Russian].

    Google Scholar 

  2. G. A. Alexandrov, A. S. Ginzburg, and G. S. Golitsyn, “The negative correlation between the changes in Moscow’s continentality index and mean annual temperature,” in Earth and Environmental Science (IOP Publishing, Moscow, 2019), Vol. 231, no. 1, p. 012004.

    Article  Google Scholar 

  3. A. S. Ginzburg, O. A. Reshetar, and I. N. Belova, “Impact of climatic factors on energy consumption during the heating season,” Thermal Eng. 63 (9), 621–627 (2016).

    Article  Google Scholar 

  4. V. V. Klimenko, A. S. Ginzburg, P. F. Demchenko, A. G. Tereshin, I. N. Belova, and E. V. Kasilova, “Impact of urbanization and climate warming on energy consumption in large cities,” Dokl. Phys. 61 (5), 521–525 (2016).

    Article  Google Scholar 

  5. V. V. Klimenko, A. G. Tereshin, and E. V. Kasilova, “Moscow: A natural testing area for strong warming impact assessment,” Dokl. Phys. 62 (11), 527–531 (2017).

    Article  Google Scholar 

  6. I. N. Belova, A. S. Ginzburg, and L. A. Krivenok, “Heating seasons length and degree days trends in Russian cities during last half century,” Energy Procedia 149, 373–379 (2018).

    Article  Google Scholar 

  7. S. P. Khromov and L. I. Mamontova, Meteorological Dictionary (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  8. W. L. Gorczynski, “The calculation of the degree of continentality,” Mon. Weather Rev. 50 (7), 369–370 (1922).

    Article  Google Scholar 

  9. V. Conrad, “Usual formulas of continentality and their limits of validity,” Trans. Am. Geophys. Union 27 (5), 663–664 (1946).

    Article  Google Scholar 

  10. S. P. Khromov, “On the problem of climate continentality,” Izv. Vses. Geogr. O-va 89 (3), 222–225 (1957).

    Google Scholar 

  11. B. V. Poltaraus and D. B. Staviskiy, “The changing continentality of climate in central Russia,” Sov. Geogr. 27 (1), 51–58 (1986).

    Article  Google Scholar 

  12. J. Vilček, J. Škvarenina, J. Vido, P. Nalevanková, R. Kandrík, and J. Škvareninová, “Minimal change of thermal continentality in Slovakia within the period 1961–2013,” Earth Syst. Dyn. 7, 735–744 (2016).

    Article  Google Scholar 

  13. S. N. Lapina, “Description of climate continentality in Saratov and St. Petersburg against the background of global warming,” Izv. Sarat. Univ., Ser.: Nauki Zemle 17 (4), 219–221 (2017).

    Google Scholar 

  14. A. V. Eliseev and I. I. Mokhov, “Amplitude–phase characteristics of the annual cycle of surface air temperature in the Northern Hemisphere,” Adv. Atmos. Sci. 10 (1), 1–16 (2003).

    Article  Google Scholar 

  15. A. V. Eliseev, I. I. Mokhov, and M. S. Guseva, “Sensitivity of amplitude–phase characteristics of the surface air temperature annual cycle to variations in annual mean temperature,” Izv., Atmos. Okean. Phys. 42 (3), 300–312 (2006).

    Article  Google Scholar 

  16. T. R. Karl, G. Kukla, V. N. Razuvayev, et al., “Global warming: Evidence for asymmetric diurnal temperature change,” Geophys. Res. Lett. 18 (12), 2253–2256 (1991).

    Article  Google Scholar 

  17. P. F. Demchenko, G. S. Golitsyn, A. S. Ginzburg, and N. N. Vel’tishchev, “Assessment of the diurnal cycle of SO2 greenhouse effect according to one-dimensional models of the vertical structure atmosphere,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 30 (5), 595–600 (1994).

    Google Scholar 

  18. R. Davy, I. Esau, A. Chernokulsky, S. Outten, and S. Zilitinkevich, “Diurnal asymmetry to the observed global warming,” Int. J. Climatol. 37 (1), 79–93 (2017).

    Article  Google Scholar 

  19. S. Nigam, N. P. Thomas, A. Ruiz-Barradas, and S. J. Weaver, “Striking seasonality in the secular warming of the northern continents: Structure and mechanisms,” J. Clim. 30 (16), 6521–6541 (2017).

    Article  Google Scholar 

  20. A. R. Stine and P. Huybers, “Changes in the seasonal cycle of temperature and atmospheric circulation,” J. Clim. 25, 7362–7380 (2012).

    Article  Google Scholar 

  21. K. A. McKinnon, A. R. Stine, and P. Huybers, “The spatial structure of the annual cycle in surface temperature: Amplitude, phase, and Lagrangian history,” J. Clim. 26 (20), 7852–7862 (2013).

    Article  Google Scholar 

  22. V. A. Semenov, M. Latif, J. H. Jungclaus, and W. Park, “Is the observed NAO variability during the instrumental record unusual?,” Geophys. Res. Lett. 35, L11701 (2008).

    Article  Google Scholar 

  23. E. S. Nesterov, The North Atlantic Oscillation: Atmosphere and Ocean (Triada, Moscow, 2013) [in Russian].

  24. C. Deser, J. W. Hurrell, and A. S. Phillips, “The role of the North Atlantic Oscillation in European climate projections,” Clim. Dyn. 49, 3141–3157 (2017).

    Article  Google Scholar 

  25. O. N. Bulygina, V. N. Razuvaev, N. T. Trofimenko, and N. V. Shvets, Description of the database of monthly-mean air temperature at Russian stations. http:// meteo.ru/data/156-temperature#oпиcaниe-мaccивa-дaнныx. Accessed March 12, 2017.

  26. J. H. Lawrimore, M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, “An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3,” J. Geophys. Res. 116, D19121 (2011).

    Article  Google Scholar 

  27. J. Hurrell, The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based), Boulder, USA (2018). https://climatedataguide.ucar.edu/ climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based

  28. V. A. Semenov, “Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region,” Dokl. Earth Sci. 418 (1), 91–94 (2008).

    Article  Google Scholar 

  29. G. A. Aleksandrov, “Towards the choice of the generic indicator for monitoring ecoclimatic changes,” Probl. Ekol. Monit. Model. Ekosist. 28 (1), 73–82 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to reviewers for their careful reading of the manuscript and helpful remarks.

Funding

This work was supported by the Russian Science Foundation, project no. 16-17-00114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Alexandrov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, G.A., Ginzburg, A.S. & Golitsyn, G.S. Influence of North Atlantic Oscillation on Moscow Climate Continentality. Izv. Atmos. Ocean. Phys. 55, 407–411 (2019). https://doi.org/10.1134/S0001433819050025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819050025

Keywords:

Navigation