Skip to main content
Log in

Subpollen Particles as Atmospheric Cloud Condensation Nuclei

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Bioparticles constitute a significant fraction of atmospheric aerosol. Their size range varies from nanometers (macromolecules) to hundreds of micrometers (plant pollen and vegetation residues). Like other atmospheric aerosol particles, the degree of involvement of bioaerosols in atmospheric processes largely depends on their hygroscopic and condensation properties. This paper studies the ability of subpollen particles of pine, birch, and rape to serve as cloud condensation nuclei. Secondary particles are obtained by the aqueous extraction of biological material from pollen grains and the subsequent solidification of atomized liquid droplets. The parameters of cloud activation are determined in the size range of 20–270 nm and water-vapor supersaturations of 0.1–1.1%. Measurement data were used to determine the hygroscopicity parameter that characterizes the effect of the chemical composition of subparticles on their condensation properties. The hygroscopic parameter varies in the range from 0.12 to 0.13. In general, the results of measurements have shown that the condensation activity of subpollen particles is comparable with the condensation activity of secondary organic aerosols and depends weakly on the type of primary pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Jaenicke, “Abundance of cellular material and proteins in the atmosphere,” Science 308, 73– (2005).

  2. A. I. Borodulin, A. S. Safatov, B. D. Belan, and M. V. Panchenko, “The height distribution and seasonal variations of the tropospheric aerosol biogenic component concentration on the south of Western Siberia,” J. Aerosol Sci. 34 (1), 681–690 (2003).

    Article  Google Scholar 

  3. H. E. Manninen, J. Back, S.-L. Sinto-Nissila, et al., “Patterns in airborne pollen and other primary biological aerosol particles (PBAP), and their contribution to aerosol mass and number in a boreal forest,” Boreal Environ. Res. 19B, 383–405 (2014).

    Google Scholar 

  4. M. Sofiev, P. Siljamo, P. Ranta, et al., “Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study,” Int. J. Biometeorol. 50, 392–402 (2006).

    Article  Google Scholar 

  5. O. Möhler, P. J. DeMott, G. Vali, et al., “Microbiology and atmospheric processes: The role of biological particles in cloud physics,” Biogeosciences 4, 1059–1071 (2007).

    Article  Google Scholar 

  6. U. Pöschl, S. T. Martin, B. Sinha, et al., “Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon,” Science 329, 1513–1515 (2010).

    Article  Google Scholar 

  7. P. J. DeMott, O. Möhler, O. Stetzer, et al., “Resurgence in ice nuclei measurement research,” Bull. Am. Meteorol. Soc. 92, 1623 – 1635 (2011).

    Article  Google Scholar 

  8. C. E. Morris, F. Conen, and J. A. Huffman, “Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere,” Global Change Biol. 20, 341–351 (2014).

    Article  Google Scholar 

  9. F. D. Pope, “Pollen grains are efficient cloud condensation nuclei,” Environ. Res. Lett. 5 (4), 044015 (2010).

    Article  Google Scholar 

  10. C. Hoose and O. Möhler, “Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments,” Atmos. Chem. Phys. 12, 9817–9854 (2012).

    Article  Google Scholar 

  11. C. Hoose, J. E. Kristjansson, and S. M. Burrows, “How important is biological ice nucleation in clouds on a global scale?,” Environ. Res. Lett. 5, 024009 (2010).

    Article  Google Scholar 

  12. D. V. Spracklen, K. S. Carslaw, J. Merikanto, et al., “Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation,” Atmos. Chem. Phys. 10, 4775–4793 (2010).

    Article  Google Scholar 

  13. A. Sesartic, U. Lohmann, and T. Storelvmo, “Modelling the impact of fungal spore ice nuclei on clouds and precipitation,” Environ. Res. Lett. 8 (1), 014029 (2013).

    Article  Google Scholar 

  14. W. R. Solomon, “Airborne pollen: A brief life,” J Allergy Clin. Immunol. 109, 895–900 (2002).

    Article  Google Scholar 

  15. M. Grote, S. Vrtala, V. Niederberger, et al., “Release of allergen-bearing cytoplasm from hydrated pollen: A mechanism common to a variety of grass (Poaceae) species revealed by electron microscopy,” J. Allergy Clin. Immunol. 108, 109–115 (2001).

    Article  Google Scholar 

  16. P. E. Taylor, R. C. Flagan, A. G. Miguel, et al., “Birch pollen rupture and the release of aerosols of respirable allergens,” Clin. Exp. Allergy 34, 1591–1596 (2004).

    Article  Google Scholar 

  17. B. G. Pummer, H. Bauer, J. Bernardi, et al., “Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen,” Atmos. Chem. Phys. 12, 2541–2550 (2012).

    Article  Google Scholar 

  18. S. Augistin, H. Wex, D. Niedermeier, et al., “Immersion freezing of birch pollen washing water,” Atmos. Chem. Phys. 13, 10989–11003 (2013).

    Article  Google Scholar 

  19. D. O’Sullivan, B. J. Murray, J. F. Ross, et al., “The relevance of nanoscale biological fragments for ice nucleation in clouds,” Sci. Rep. 5, 8082 (2015).

    Article  Google Scholar 

  20. A. L. Steiner, S. D. Brooks, C. Deng, et al., “Pollen as atmospheric cloud condensation nuclei,” Geophys. Res. Lett. 42, 3596–3602 (2015).

    Article  Google Scholar 

  21. G. C. Roberts and A. Nenes, “A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements,” Aerosol Sci. Technol. 39, 206–221 (2005).

    Article  Google Scholar 

  22. D. Rose, S. S. Gunthe, E. Mikhailov, et al., “Calibration and measurement of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment,” Atmos. Chem. Phys. 8, 1153–1179 (2008).

    Article  Google Scholar 

  23. E. F. Mikhailov, O. A. Ivanova, S. S. Vlasenko, E. Yu. Nebos’ko, and T. I. Ryshkevich, “Cloud condensation nuclei activity of the Aitken mode particles near St. Petersburg, Russia,” Izv., Atmos. Ocean. Phys. 53 (3), 326–333 (2017).

    Article  Google Scholar 

  24. G. P. Frank, U. Dusek, and M. O. Andreae, “Technical note: A method for measuring size-resolved CCN in the atmosphere,” Atmos. Chem. Phys. Discuss. 6 (3), 4879–4895 (2006).

    Article  Google Scholar 

  25. D. Rose, A. Nowak, P. Achtert, et al., “Cloud condensation nuclei in polluted air and biomass burning smoke near the megacity Guangzhou, China. Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity,” Atmos. Chem. Phys. 10, 3365–3383 (2010).

    Article  Google Scholar 

  26. M. D. Petters and S. M. Kreidenweis, “A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,” Atmos. Chem. Phys. 7, 1961–1971 (2007).

    Article  Google Scholar 

  27. M. O. Andreae and D. Rosenfeld, “Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols,” Earth-Sci. Rev. 89, 13–41 (2008).

    Article  Google Scholar 

  28. E. J. T. Levin, A. J. Prenni, M. D. Petters, et al., “An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado,” J. Geophys. Res. 117 (D6) (2012).

  29. E. F. Mikhailov, G. N. Mironov, C. Pöhlker, et al., “Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign,” Atmos. Chem. Phys. 15, 8847–8869 (2015).

    Article  Google Scholar 

  30. M. Pöhlker, C. Pöhlker, F. Ditas, et al., “Long-term observations of cloud condensation nuclei in the Amazon rain forest. Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction,” Atmos. Chem. Phys. 16, 15709–15740 (2016).

    Article  Google Scholar 

  31. K. J. Pringle, H. Tost, A. Pozzer, et al., “Global distribution of the effective aerosol hygroscopicity parameter for CCN activation,” Atmos. Chem. Phys. 10, 5241–5255 (2010).

    Article  Google Scholar 

  32. G. G. Franchi, L. Bellani, M. Nepi, et al., “Types of carbohydrate reserves in pollen: Localization, systematic distribution and ecophysiological significance,” Flora 191, 143–159 (1996).

    Article  Google Scholar 

  33. E. Pacini, M. Guarnieri, and M. Nepi, “Pollen carbohydrates and water content during development, presentation, and dispersal: A short review,” Protoplasma 228, 73–77 (2006).

    Article  Google Scholar 

  34. C. Suphioglu, M. B. Singh, P. Taylor, et al., “Mechanism of grass-pollen-induced asthma,” The Lancet 339, 569–572 (1992).

    Article  Google Scholar 

  35. C. Pöhlker, J. A. Huffman, J.-D. Forster, et al., “Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen,” Atmos. Meas. Tech. 6, 3369–3392 (2013).

    Article  Google Scholar 

Download references

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 16-05-00717a, and the Geomodel and Innovative Technologies of Composite Materials resource centers. The results of experimental measurements discussed in Section 5 were obtained with support from the Russian Science Foundation, project no. 18-17-00076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Mikhailov.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, E.F., Ivanova, O.A., Nebosko, E.Y. et al. Subpollen Particles as Atmospheric Cloud Condensation Nuclei. Izv. Atmos. Ocean. Phys. 55, 357–364 (2019). https://doi.org/10.1134/S000143381904008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381904008X

Keywords:

Navigation