Skip to main content
Log in

Phase Shift between Changes in Global Temperature and Atmospheric CO2 Content under External Emissions of Greenhouse Gases into the Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The phase shift between changes in the global surface temperature Tg and atmospheric CO2 content \({{q}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) has been shown earlier not to characterize causal relationships in the Earth system in the general case. Specifically, the sign of this phase shift under nongreenhouse radiative forcing changes depends on the time scale of this forcing. This paper analyzes the phase shift between changes in the global surface temperature Tg and the atmospheric CO2 content \({{q}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) under synchronous external emissions of carbon dioxide and methane into the atmosphere on the basis of numerical experiments with the IAP RAS climatic model and a conceptual climate model with carbon cycle. For a sufficiently large time scale of external forcing, the changes in \({{q}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) lag relative to the corresponding changes in Tg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  2. J. Lean and D. Rind, “How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006,” Geophys. Res. Lett. 35 (18), L18701 (2008).

    Article  Google Scholar 

  3. I. I. Mokhov and D. A. Smirnov, “Empirical estimates of the influence of natural and anthropogenic factors on the global surface temperature,” Dokl. Earth Sci. 427 (1), 798–803 (2009).

    Article  Google Scholar 

  4. D. A. Smirnov and I. I. Mokhov, “From Granger causality to long-term causality: Application to climatic data,” Phys. Rev. E 80 (1), 016208 (2009).

    Article  Google Scholar 

  5. C. D. Schonwiese, A. Walter, and S. Brinckmann, “Statistical assessments of anthropogenic and natural global climate forcing. An update,” Meteorol. Z. 19 (1), 3–10 (2010).

    Article  Google Scholar 

  6. I. I. Mokhov, D. A. Smirnov, and A. A. Karpenko, “Assessments of the relationship of changes of the global surface air temperature with different natural and anthropogenic factors based on observations,” Dokl. Earth Sci. 443 (1), 381–387 (2012).

    Article  Google Scholar 

  7. I. I. Mokhov and D. A. Smirnov, “Estimating the contributions of the Atlantic multidecadal oscillation and variations in the atmospheric concentration of greenhouse gases to surface air temperature trends from observations,” Dokl. Earth Sci. 480 (1), 602–606 (2018).

    Article  Google Scholar 

  8. G. Hegerl, K. Hasselmann, U. Cubasch, J. Mitchell, E. Roeckner, R. Voss, and J. Waszkewitz, “Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change,” Clim. Dyn. 13, 613–634 (1997).

    Article  Google Scholar 

  9. P. Stott, S. Tett, G. Jones, M. Allen, W. Ingram, and J. Mitchell, “Attribution of twentieth century temperature change to natural and anthropogenic causes,” Clim. Dyn. 17 (1), 1–21 (2001).

    Article  Google Scholar 

  10. D. Stone, M. Allen, F. Selten, M. Kliphuis, and P. Stott, “The detection and attribution of climate change using an ensemble of opportunity,” J. Clim. 20 (3), 504–516 (2007).

    Article  Google Scholar 

  11. D. Stone, M. Allen, P. Stott, P. Pall, S. K. Min, T. Nozawa, and S. Yukimoto, “The detection and attribution of human influence on climate,” Annu. Rev. Energy Resour. 34, 1–16 (2009).

    Article  Google Scholar 

  12. K. Sedlacek and R. Knutti, “Evidence for external forcing on 20th-century climate from combined ocean atmosphere warming patterns,” Geophys. Res. Lett. 39 (20), L20708 (2012).

    Google Scholar 

  13. G. Jones, P. Stott, and N. Christidis, “Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations,” J. Geophys. Res.: Atmos. 118 (10), 4001–4024 (2013).

    Google Scholar 

  14. A. Ribes and L. Terray, “Application of regularised optimal fingerprint analysis for attribution. Part II: Application to global near-surface temperature,” Clim. Dyn. 41 (11–12), 2837–2853 (2013).

    Article  Google Scholar 

  15. E. Monnin, A. Indermohle, A. Dallenbach, J. Flockiger, B. Stauffer, T. Stocker, D. Raynaud, and J. M. Barnola, “Atmospheric CO2 concentrations over the last glacial termination,” Science 291 (5501), 112–114 (2001).

    Article  Google Scholar 

  16. I. I. Mokhov, V. A. Bezverkhny, and A. A. Karpenko, “Diagnosis of relative variations in atmospheric greenhouse gas contents and temperature from Vostok Antarctic ice-core paleoreconstructions,” Izv., Atmos. Ocean. Phys. 41 (5), 523–536 (2005a).

    Google Scholar 

  17. I. I. Mokhov, V. A. Bezverkhny, and A. A. Karpenko, “Mutual changes in the temperature regime and content of greenhouse gases in the atmosphere from paleoreconstructions for the last 800 ka,” in Extreme Natural Phenomena and Catastrophes, Vol. 1: Assessment and Ways to Mitigating the Adverse Effects of Extreme Natural Phenomena, Ed. by A. O. Gliko (IFZ RAN, Moscow, 2010), pp. 312–319 [in Russian].

  18. B. Bereiter, D. Luthi, M. Siegrista, S. Schupbach, T. Stocker, and H. Fischer, “Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw,” Proc. Natl. Acad. Sci. U.S.A. 109 (25), 9755–9760 (2012).

    Article  Google Scholar 

  19. O. Humlum, K. Stordahl, and J. E. Solheim, “The phase relation between atmospheric carbon dioxide and global temperature,” Glob. Planet. Change 100, 51–69 (2013).

    Article  Google Scholar 

  20. J. Quinn, Global Warming, Geophysical Counterpoints to the Enhanced Greenhouse Theory (Dorrance Publ., Pittsburgh, 2010).

    Google Scholar 

  21. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, and A. V. Timazhev, “A lag between temperature and atmospheric CO2 concentration based on a simple coupled model of climate and the carbon cycle,” Dokl. Earth Sci. 463 (2), 863–867 (2015).

    Article  Google Scholar 

  22. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, and A. V. Timazhev, “Lead–lag relationships between global mean temperature and the atmospheric CO2 content in dependence of the type and time scale of the forcing,” Glob. Planet. Change 148, 29–41 (2017).

    Article  Google Scholar 

  23. K. E. Muryshev, A. V. Timazhev, and M. V. Dembitskaya, “Time lag between changes in global temperature and atmospheric content of carbon dioxide under non-greenhouse external forcing of the climate system,” Fundam. Prikl. Klimatol., No. 3, 84–102 (2017).

  24. I. I. Mokhov, Diagnostics of the Climate System Structure (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  25. I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, V. Ch. Khon, and D. V. Khvorost’yanov, “Estimation of global and regional climate changes during the 19th–21st centuries on the basis of the IAP RAS model with consideration for anthropogenic forcing,” Izv., Atmos. Ocean. Phys. 38 (5), 555–568 (2002).

    Google Scholar 

  26. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, V. Ch. Khon, M. G. Akperov, M. M. Arzhanov, A. A. Karpenko, V. A. Tikhonov, A. V. Chernokulsky, and E. V. Sigaeva, “Climate changes and their assessment based on the IAP RAS global model simulations,” Dokl. Earth Sci. 402 (4), 591–595 (2005).

    Google Scholar 

  27. A. V. Eliseev, “Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values,” Izv., Atmos. Ocean. Phys. 47 (2), 131–153 (2011).

    Article  Google Scholar 

  28. A. V. Eliseev and I. I. Mokhov, “Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios,” Adv. Atmos. Sci. 28 (5), 1215–1232 (2011).

    Article  Google Scholar 

  29. I. I. Mokhov and A. V. Eliseev, “Modeling of global climate variations in the 20th–23rd centuries with new RCP scenarios of anthropogenic forcing,” Dokl. Earth Sci. 443 (2), 532–536 (2012).

    Article  Google Scholar 

  30. A. V. Eliseev and D. E. Sergeev, “Impact of subgrid-scale vegetation heterogeneity on the simulation of carbon-cycle characteristics,” Izv., Atmos. Ocean. Phys. 50 (3), 225–235 (2014).

    Article  Google Scholar 

  31. A. V. Eliseev, I. I. Mokhov, and A. V. Chernokulsky, “Influence of ground and peat fires on CO2 emissions into the atmosphere,” Dokl. Earth Sci. 459 (2), 1565–1569 (2014).

    Article  Google Scholar 

  32. A. Eliseev, I. Mokhov, and A. Chernokulsky, “An ensemble approach to simulate CO2 emissions from natural fires,” Biogeosciences 11 (12), 3205–3223 (2014).

    Article  Google Scholar 

  33. A. Eliseev, “Impact of tropospheric sulphate aerosols on the terrestrial carbon cycle,” Glob. Planet. Change 124, 30–40 (2015).

    Article  Google Scholar 

  34. A. V. Eliseev, “Influence of sulfur compounds on the terrestrial carbon cycle,” Izv., Atmos. Ocean. Phys. 51 (6), 599–608 (2015).

    Article  Google Scholar 

  35. M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, I. I. Mokhov, and V. Ch. Khon, “Simulation of thermal and hydrological regimes of Siberian river watersheds under permafrost conditions from reanalysis data,” Izv., Atmos. Ocean. Phys. 44 (1), 83–89 (2008).

    Article  Google Scholar 

  36. M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Impact of climate changes over the extratropical land on permafrost dynamics under RCP scenarios in the 21st century as simulated by the IAP RAS climate model,” Russ. Meteorol. Hydrol. 38 (7), 456–464 (2013).

    Article  Google Scholar 

  37. A. V. Eliseev, M. M. Arzhanov, P. F. Demchenko, and I. I. Mokhov, “Changes in climatic characteristics of Northern Hemisphere extratropical land in the 21st century: Assessments with the IAP RAS climate model,” Izv., Atmos. Ocean. Phys. 45 (3), 271–283 (2009).

    Article  Google Scholar 

  38. A. V. Eliseev, I. I. Mokhov, M. M. Arzhanov, P. F. Demchenko, and S. N. Denisov, “Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity,” 44 (2), 139–152 (2008).

  39. S. N. Denisov, M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Sensitivity of methane emissions from Western Siberian wetlands to climate changes: Multi-model estimations,” Opt. Atmos. Okeana 24 (4), 319–322 (2011).

    Article  Google Scholar 

  40. S. N. Denisov, A. V. Eliseev, and I. I. Mokhov, “Climate change in IAP RAS global model taking account of interaction with methane cycle under anthropogenic scenarios of RCP family,” Russ. Meteorol. Hydrol. 38 (11), 741–749 (2013).

    Article  Google Scholar 

  41. T. J. Osborn and T. M. L. Wigley, “A simple model for estimating methane concentration and lifetime variations,” Clim. Dyn. 9, 181–193 (1994).

    Article  Google Scholar 

  42. M. Andreae, C. Jones, and P. Cox, “Strong present-day aerosol cooling implies a hot future,” Nature 435 (7046), 1187–1190 (2005).

    Article  Google Scholar 

  43. T. Masters and R. Benestad, “Comment on "The phase relation between atmospheric carbon dioxide and global temperature”," Glob. Planet. Change 106, 141–142 (2013).

    Article  Google Scholar 

  44. G. Myhre, E. J. Highwood, K. P. Shine, and F. Stordal, “New estimates of radiative forcing due to well mixed greenhouse gases,” Geophys. Res. Lett. 25, 2715–2718 (1998).

    Article  Google Scholar 

  45. N. Gedney, P. M. Cox, and C. Huntingford, “Climate feedback from wetland methane emissions,” Geophys. Res. Lett. 31, L2050 (2004).

    Article  Google Scholar 

Download references

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 18-05-00087, and the Fund for State Support of Kazan (Privolzhskii) Federal University aimed at improving the competitive capability among leading scientific and educational centers in the world, using the results obtained in the framework of the RAS Program “Climate Change: Causes, Risks, Consequences, Problems of Adaptation and Regulation”. Estimates of phase shifts in climatic processes were also carried out within the framework of the RSF project (no. 19-17-0240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Muryshev.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muryshev, K.E., Eliseev, A.V., Denisov, S.N. et al. Phase Shift between Changes in Global Temperature and Atmospheric CO2 Content under External Emissions of Greenhouse Gases into the Atmosphere. Izv. Atmos. Ocean. Phys. 55, 235–241 (2019). https://doi.org/10.1134/S0001433819030046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819030046

Keywords:

Navigation