Skip to main content
Log in

Sulfate Sources in Carbonaceous Aerosol Particles in the Urban Atmosphere: The Case of Irkutsk

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

According to monitoring data, it is found that the main source of sulfates in carbonaceous particles in the atmosphere of Irkutsk is sulfur dioxide captured from the air. Their accumulation in the particles is caused by heterogeneous chemical reactions (HCRs) and is accompanied by the substitution of hydrocarbonates (\({\text{HCO}}_{3}^{ - }\)) for sulfate anions. In this case, sulfur dioxide is oxidized by ozone in the dry atmosphere, and hydrogen peroxide (H2O2), along with dissolved ozone, also participates in the oxidation process in the moist atmosphere. The details of the mechanisms for these HСRs are discussed and the estimates of the dynamics of sulphate production in carbonaceous particles are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. J. Dentener, G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, “Role of mineral aerosol as a reactive surface in the global troposphere,” J. Geophys. Res.: Atmos. 101, 22869–22889 (1996).

    Article  Google Scholar 

  2. L. L. Robbins and V. J. Fabry, Carbon Dioxide Chemistry: Environmental Issues (The Royal Society of Chemistry, Cambridge, 1994).

    Google Scholar 

  3. C. R. Usher, A. E. Michel, and V. H. Grassian, “Reactions on mineral dust,” Chem. Rev. 103, 4883–4939 (2003).

    Article  Google Scholar 

  4. Y. Mamane, E. Ganor, and A. E. Donagi, “Aerosol composition of urban and desert origin in the eastern Mediterranean, I. Individual particle analysis,” Water Air Soil Pollut. 14, 29–43 (1980).

    Article  Google Scholar 

  5. D. L. Savoie, J. M. Prospero, and E. S. Saltzman, “Non-sea-salt sulfate and nitrate in trade wind aerosols at Barbados: Evidence for long-range transport,” J. Geophys. Res.: Atmos. 99, 5069–5080 (1989).

    Article  Google Scholar 

  6. H. C. Zhuang, C. K. Chan, M. Fang, and A. S. Wexler, “Formation of nitrate and non-sea-salt sulfate on coarse particles,” Atmos. Environ. 33, 4223–4233 (1999).

    Article  Google Scholar 

  7. D. Z. Zhang, G. Y. Shi, Y. Iwasaka, and M. Hu, “Mixture of sulfate and nitrate in coastal atmospheric aerosols: Individual particle studies in Qingdao (36°04′ N, 120°21′ E), China,” Atmos. Environ. 34, 2669–2679 (2000).

    Article  Google Scholar 

  8. L. P. Golobokova, U. G. Filippova, I. I. Marinaite, O. Yu. Belozerova, A. G. Gorshkov, V. A. Obolkin, V. L. Potemkin, and T. V. Khodzher, “Chemical composition of aerosols over the Lake Baikal water area,” Opt. Atmos. Okeana 24 (3), 236–241 (2011).

    Google Scholar 

  9. V. A. Obolkin, O. G. Netsvetaeva, L. P. Golobokova, V. L. Potemkin, E. A. Zimnik, U. G. Filippova, and T. V. Khodzher, “Results of long-term investigations on acid deposition in the area of South Baikal,” Geogr. Nat. Resour. 34 (2), 151–157 (2013).

    Article  Google Scholar 

  10. A. N. Yermakov, L. P. Golobokova, O. G. Netsvetaeva, A. E. Aloyan, V. O. Arutyunyan, and T. V. Khodzher, “On the nature of aerosol particles in the atmosphere of Irkutsk,” Izv., Atmos. Ocean. Phys. 54 (2), 162–172 (2018).

    Article  Google Scholar 

  11. A. N. Yermakov, A. E. Aloyan, T. V. Khodzher, L. P. Golobokova, and V. O. Arutyunyan, “On the influence of atmospheric chemical reactions on the ion composition of aerosol particles in the Baikal region,” Izv., Atmos. Ocean. Phys. 43 (2), 208–218 (2007).

    Article  Google Scholar 

  12. I. D. Eremina, A. E. Aloyan, V. O. Arutyunyan, I. K. Larin, N. E. Chubarova, and A. N. Yermakov, “Hydrocarbonates in atmospheric precipitation of Moscow: Monitoring data and analysis,” Izv., Atmos. Ocean. Phys. 53 (3), 334–342 (2017).

    Article  Google Scholar 

  13. S. Mikkonen, S. Romakkaniemii, J. N. Smith, H. Korhonen, T. Petäjä, C. Plass-Duelmer, M. Boy, P. H. McMurry, K. E. J. Lehtinen, J. Joutsensaari, A. Hamed, R. L. Mauldin, W. Birmili, G. Spindler, F. Arnold, M. Kulmala, and A. Laaksonen, “A statistical proxy for sulphuric acid concentration,” Atmos. Chem. Phys. 11, 11319–11334 (2011).

    Article  Google Scholar 

  14. H. A. Al-Hosney and V. H. Grassian, “Carbonic acid: An important intermediate in the surface chemistry of calcium carbonate,” J. Am. Chem. Soc. 126, 8068–8069 (2004).

    Article  Google Scholar 

  15. L. Li, Z. M. Chen, Y. H. Zhang, T. Zhu, J. L. Li, and J. Ding, “Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate,” Atmos. Chem. Phys. 6, 2453–2464 (2006).

    Article  Google Scholar 

  16. Ch. Santschi and M. J. Rossi, “Uptake of CO2, SO2, HNO3 and HCl on calcite (CaCO3) at 300 K: Mechanism and the role of adsorbed water,” J. Phys. Chem. A 110 (21), 6789–6802 (2006). https://doi.org/10.1021/jp056312b

    Article  Google Scholar 

  17. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Butterworths, London, 1970).

    Google Scholar 

  18. S. E. Schwartz, “Mass transfer considerations pertinent to aqueous phase reaction of gases in liquid water clouds,” in Chemistry of Multiphase Atmospheric Systems (NATO ASI Series), Ed. by W. Jaeschke (Springer, Berlin, 1986), pp. 415–471.

    Google Scholar 

  19. R. D. Latterman, Calcium Carbonate Dissolution Rate in Limestone Contactors (U.S. Environmental Protection Agency, Cincinnati, Ohio, 1995).

    Google Scholar 

  20. H. Herrmann, B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, and R. Zellner, “CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry,” J. Atmos. Chem. 36 (3), 231–284 (2000).

    Article  Google Scholar 

  21. R. M. Garrels and C. L. Christ, Solutions, Minerals and Equilibria (Harper & Row, New York, 1965).

    Google Scholar 

  22. A. N. Yermakov, I. K. Larin, A. A. Ugarov, and A.  P. Purmal’, “Iron catalysis of SO2 oxidation in the atmosphere,” Kinet. Catal. 44 (4), 524–537 (2003).

    Article  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-05-00289, and by the State assignment to the Talroze Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences (subject AAAA-0047-2018-0012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Yermakov or A. E. Aloyan.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.N., Aloyan, A.E. & Arutyunyan, V.O. Sulfate Sources in Carbonaceous Aerosol Particles in the Urban Atmosphere: The Case of Irkutsk. Izv. Atmos. Ocean. Phys. 55, 271–280 (2019). https://doi.org/10.1134/S0001433819020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819020051

Keywords:

Navigation