Skip to main content
Log in

Numerical Simulation of Ice Cover of Saline Lakes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A new version of the one-dimensional thermo-hydrodynamic and biogeochemical model LAKE2.1 is presented. The model is supplemented with a description of the dynamics and vertical distribution of salinity in an ice cover. Simulation results are compared to in situ and satellite data of water temperature and ice cover at Uvs Nuur Lake (Mongolia) from 2000 to 2015. It is shown that underestimating the mixed-layer depth by the model with standard turbulence closure k−ε during summer and autumn leads to a significant shift in the timing of the onset of ice. It is also demonstrated that, while neglecting the salinity of the lake, the freeze-up according to the model happens 16–17 days earlier than in reality. This error is removed if the effect of salinity on water density and freezing temperature is included. However, in this case, the model underestimates the maximal seasonal ice thickness on average by 0.2 m. In turn, this error decreases an order of magnitude if the dynamics and vertical distribution of salinity in ice are simulated in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. F. Brekhovskikh, Hydrophysical Factors of the Formation of the Oxygen Regime in Water Bodies, Ed. by V. K. Debol’skii and A. G. Kocharyan (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  2. S. Greene, K. M. Walter Anthony, D. Archer, A. Sepulveda-Jauregui, and K. Martinez-Cruz, “Modeling the impediment of methane ebullition bubbles by seasonal lake ice,” Biogeosciences 11 (23), 6791–6811 (2014).

    Article  Google Scholar 

  3. G. A. Hodgkins, I. C. James Ii, and T. G. Huntington, “Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000,” Int. J. Climatol. 22, 1819–1827 (2002).

    Article  Google Scholar 

  4. R. Latifovic and D. Pouliot, “Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record,” Remote Sens. Environ. 106 (4), 492–507 (2007).

    Article  Google Scholar 

  5. A. Oveisy and L. Boegman, “One-dimensional simulation of lake and ice dynamics during winter,” J. Limnol. 73 (3) (2014). https://doi.org/10.4081/jlimnol.2014.903

  6. D. V. Mironov, Parameterization of Lakes in Numerical Weather Prediction. Part 1: Description of a Lake Model, Tech. Rep. (Deutscher Wetterdienst, Offenbach, 2008).

  7. X. Fang and H. G. Stefan, “Long-term lake water temperature and ice cover simulations/measurements,” Cold Reg. Sci. Technol. 24 (3), 289–304 (1996).

    Article  Google Scholar 

  8. M. Leppäranta, “Modelling the formation and decay of lake ice,” in The Impact of Climate Change on European Lakes (Springer, Dordrecht, 2010), pp. 63–83.

    Google Scholar 

  9. L. C. Brown and C. R. Duguay, “Modelling lake ice phenology with an examination of satellite-detected subgrid cell variability,” Adv. Meteorol. 2012, 1–19 (2012).

    Article  Google Scholar 

  10. A. F. Voevodin and T. B. Grankina, “Numerical simulation of the ice-cover growth dynamics in freshwater and brackish-water reservoirs,” Mat. Zametki SVFU 147–158 (2012).

  11. Yu. L. Nazintsev and V. V. Panov, Phase Composition and Thermophysical Characteristics of Sea Ice (Gidrometeoizdat, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  12. N. G. Yakovlev, “Coupled model of ocean general circulation and sea ice evolution in the Arctic Ocean,” Izv., Atmos. Ocean. Phys. 39 (3), 355–368 (2003).

    Google Scholar 

  13. P. J. Griewank and D. Notz, “A 1-D modelling study of Arctic sea-ice salinity,” Cryosphere 9 (1), 305–329 (2015).

    Article  Google Scholar 

  14. V. M. Stepanenko and V. N. Lykossov, “Numerical modeling of the heat and moisture transport in a lake–soil system,” Russ. Meteorol. Hydrol. 30 (3), 69–77 (2005).

    Google Scholar 

  15. V. Stepanenko, I. Mammarella, A. Ojala, H. Miettinen, V. Lykosov, and T. Vesala, “LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes,” Geosci. Model Dev. 9 (5), 1977–2006 (2016).

    Article  Google Scholar 

  16. V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykossov, “Numerical modeling of methane emissions from lakes in the permafrost zone,” Izv., Atmos. Ocean. Phys. 47 (2), 252–263 (2011).

    Article  Google Scholar 

  17. V. M. Stepanenko, A. Martynov, S. Goyette, X. Fang, M. Perroud, and D. Mironov, “First steps of a lake model intercomparison project,” Boreal Environ. Res. 15, 191–202 (2010).

    Google Scholar 

  18. V. M. Stepanenko, A. Martynov, K. D. Jöhnk, Z. M. Subin, M. Perroud, X. Fang, F. Beyrich, D. Mironov, and S. Goyette, “A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake,” Geosci. Model Dev. 6 (4), 1337–1352 (2013).

    Article  Google Scholar 

  19. V. Stepanenko, K. D. Jöhnk, E. Machulskaya, M. Perroud, Z. Subin, A. Nordbo, I. Mammarella, and D. Mironov, “Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models,” Tellus, Ser. A 66 (1), 21389 (2014).

    Article  Google Scholar 

  20. W. Thiery, V. Stepanenko, X. Fang, K. Jöhnk, Z. Li, A. Martynov, M. Perroud, Z. Subin, F. Darchambeau, D. Mironov, and N. van Lipzig, “LakeMIP Kivu: Evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models,” Tellus, Ser. A 66 (1), 21390 (2014).

    Article  Google Scholar 

  21. P. V. Bogorodsky and A. V. Pnyushkov, “A simple model for seawater crystallization in the temperature spectrum,” Oceanology (Engl. Transl.) 47 (4), 500–506 (2007).

  22. O. M. Andreev and B. V. Ivanov, “Parametrization of the vertical distribution of first-year ice salinity for problems of thermodynamical modeling in the Arctic,” Probl. Arkt. Antarkt. 75, 99–105 (2007).

    Google Scholar 

  23. N. N. Zubov, Arctic Ice (Izd. Glavsevmorputi, Moscow, 1945) [in Russian].

    Google Scholar 

  24. M. Paul, PhD Thesis (Technische Universität, Dresden, 2012).

  25. The Recent Surface and Subsurface Waters in the Endorheic Uvs Nuur Basin (Northwest Mongolia), Ed. by W. Horn, M. Paul, D. Uhlmann, A. Dulmaa, G. Davaa, and N. Tseveendorj (S. Hirzel, Leipzig, 2016).

    Google Scholar 

  26. H. H. Poole and W. R. G. Atkins, “Photo-electric measurements of submarine illumination throughout the year,” J. Mar. Biol. Assoc. U.K. 16 (1), 297–324 (1929).

    Article  Google Scholar 

  27. D. K. Perovich, The Optical Properties of Sea Ice, Tech. Rep. (US Army Corps of Engineers, 1996).

  28. P. Berrisford, D. P. Dee, P. Poli, R. Brugge, K. Fielding, M. Fuentes, P. W. Krallberg, S. Kobayashi, S. Uppala, and A. Simmons, The ERA-Interim Archive version 2.0 (Shinfield Park, Reading, 2011).

    Google Scholar 

  29. S. N. MacCallum and C. J. Merchant, “Surface water temperature observations of large lakes by optimal estimation,” Can. J. Remote Sens. 38 (1), 25–45 (2012).

    Article  Google Scholar 

  30. K. Hosoda, H. Murakami, F. Sakaida, and H. Kawamura, “Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific,” J. Oceanogr. 63 (2), 267–280 (2007).

    Article  Google Scholar 

  31. S. Sharma, D. K. Gray, J. S. Read, C. M. O’Reilly, P. Schneider, A. Qudrat, C. Gries, S. Stefanoff, S. E. Hampton, S. Hook, J. D. Lenters, D. M. Livingstone, P. B. McIntyre, R. Adrian, M. G. Allan, O. Anneville, L. Arvola, J. Austin, J. Bailey, J. S. Baron, J. Brookes, Y. Chen, R. Daly, M. Dokulil, B. Dong, K. Ewing, E. de Eyto, D. Hamilton, K. Havens, S. Haydon, H. Hetzenauer, J. Heneberry, A. L. Hetherington, S. N. Higgins, E. Hixson, L. R. Izmest’eva, B. M. Jones, K. Kangur, P. Kasprzak, O. Koster, B. M. Kraemer, M. Kumagai, E. Kuusisto, G. Leshkevich, L. May, S. MacIntyre, D. Muller-Navarra, M. Naumenko, P. Noges, T. Noges, P. Niederhauser, R. P. North, A. M. Paterson, P.-D. Plisnier, A. Rigosi, A. Rimmer, M. Rogora, L. Rudstam, J. A. Rusak, N. Salmaso, N. R. Samal, D. E. Schindler, G. Schladow, S. R. Schmidt, T. Schultz, E. A. Silow, D. Straile, K. Teubner, P. Verburg, A. Voutilainen, A. Watkinson, G. A. Weyhenmeyer, C. E. Williamson, and K. H. Woo, “A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009,” Sci. Data 2, 150008 (2015).

    Article  Google Scholar 

  32. I. V. Khvostov, A. N. Romanov, V. V. Tikhonov, and E. A. Sharkov, “Some features of microwave radiothermal radiation of freshwater reservoirs with ice cover,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 14 (4), 149–154 (2017).

    Article  Google Scholar 

  33. A. S. Gardner and M. J. Sharp, “A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization,” J. Geophys. Res. 115 (F1), F01009 (2010).

    Google Scholar 

  34. I. P. Chubarenko, Horizontal Convection Above Underwater Slopes (Terra-Baltika, Kaliningrad, 2010) [in Russian].

    Google Scholar 

  35. T. Arai, “Climatic and geomorphological influences on lake temperature,” SIL Proc. 21 (1), 130–134 (1981).

  36. K. Patalas, “Mid-summer mixing depths of lakes of different latitudes,” SIL Proc. 22 (1), 97–102 (1922-2010).

  37. A. Gaudard, R. Schwefel, L. R. Vinna, M. Schmid, A. Wuest, and D. Bouffard, “Optimizing the parameterization of deep mixing and internal seiches in one-dimensional hydrodynamic models: A case study with Simstrat v1.3,” Geosci. Model Dev. 10 (9), 3411–3423 (2017).

    Article  Google Scholar 

  38. H. Z. Baumert and H. Peters, “Turbulence closure: Turbulence, waves and the wave–turbulence transition – Part 1: Vanishing mean shear,” Ocean Sci. 5 (1), 47–58 (2009).

    Article  Google Scholar 

  39. M. Hondzo and H. G. Stefan, “Lake water temperature simulation model,” J. Hydraul. Eng. 119 (11), 1251–1273 (1993).

    Article  Google Scholar 

  40. G. Kirillin and A. Terzhevik, “Thermal instability in freshwater lakes under ice: Effect of salt gradients or solar radiation?,” Cold Reg. Sci. Technol. 65 (2), 184–190 (2011).

    Article  Google Scholar 

  41. V. Stepanenko, I. A. Repina, A. Artamonov, S. Gorin, V. N. Lykosov, and D. Kulyamin, “Mid-depth temperature maximum in an estuarine lake,” Environ. Res. Lett. 13 (3), 035006 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-55-44057 “Modeling of interaction of thermal regime of largest Siberian and Mongolian lakes with regional climate system processes”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Stepanenko.

Additional information

Translated by M. Cherbunina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanenko, V.M., Repina, I.A., Ganbat, G. et al. Numerical Simulation of Ice Cover of Saline Lakes. Izv. Atmos. Ocean. Phys. 55, 129–138 (2019). https://doi.org/10.1134/S0001433819010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819010092

Keywords:

Navigation