Skip to main content

Baikal Electromagnetic Experiment

Abstract—

The vertical component of the electric field Ez in the hydrosphere is not contaminated by the telluric component and therefore can effectively be used to monitor various processes in the hydrosphere itself, lithosphere, and atmosphere. For this purpose, the Ez monitoring experiment on the surface–floor base has been conducted in Lake Baikal since 2003. The lack of the telluric component is confirmed experimentally and justified by simulation. The effect and precursors of the close earthquake, the variations in total flows of water currents, and variations in the closing current of the Global Electric Circuit in the conducting Earth are studied. The measurements of macroscopic quantum nonlocal correlations have also been set up since 2012. Based on them, the possibility of forecasting processes with a large random component, in particular a remote earthquake, is demonstrated. On the territory adjacent to the deep-water monitoring site, measurements of the gradients of magnetic field variations have been underway since 2017; it is expected that these will be expanded to the entire coast of Lake Baikal. To interpret measurements, geoelectric models of the Baikal rift, which represent the known competing hypotheses, have been constructed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

REFERENCES

  1. Berdichevsky, M.N., Vanyan, L.L., and Koshurnikov, A.V., Magnetotelluric sounding in the Baikal rift zone, Izv., Phys. Solid Earth, 1999, vol. 35, no. 10, pp. 793–814.

    Google Scholar 

  2. Calsamiglia, J., Hartmann, L., Dur, W., and Briegel, H.-J., Spin gases: Quantum entanglement driven by classical kinematics, Phys. Rev. Lett., 2005, vol. 95, 180 502.

    Article  Google Scholar 

  3. Cramer, J.G., Generalized absorber theory and Einstein–Podolsky–Rosen paradox, Phys. Rev. D: Part. Fields, 1980, vol. 22, pp. 362–376.

    Article  Google Scholar 

  4. De Batist, M., Canals, M., Sherstyankin, P., Alekseev, S., et al., A new bathymetric map of Lake Baikal, 2002. http://www.lin.irk.ru/intas/index.htm.

  5. Dür, W. and Briegel, H.-J., Stability of macroscopic entanglement under decoherence, Phys. Rev. Lett., 2004, vol. 92, 180 403.

    Article  Google Scholar 

  6. Epov, M.I., Pospeeva, E.V., and Vitte, L.V., Crust structure and composition in the southern Siberian craton (influence zone of Baikal rifting), from magnetotelluric data, Russ. Geol. Geofiz., 2012, vol. 53, no. 3, pp. 293–306.

    Article  Google Scholar 

  7. Gao, S.P., Davis, M., Liu, H., Slack, P., Zorin, Y.A., Logatchev, N.A., Kogan, M., Burkholder, P., and Meyer, R.P., Asymmetric upwarp of the asthenosphere beneath the Baikal rift zone, Siberia, J. Geophys. Res., 1994, vol. 99, pp. 15 319–15 330.

    Article  Google Scholar 

  8. Ghosh, S., Rosenbaum, T.F., Aepll, G.A., and Coppersmith, S.N., Entanglement quantum state of magnetic dipoles, Nature, 2003, vol. 425, p. 48.

    Article  Google Scholar 

  9. Grachev, A.F., Main problems of neotectonics and geodynamics of Northern Eurasia, Izv., Phys. Solid Earth, 1996, vol. 32, no. 12, pp. 925–954.

    Google Scholar 

  10. Hoyle, F. and Narlikar, J.V., Cosmology and action-at-a-distance electrodynamics, Rev. Mod. Phys., 1995, vol. 67, no. 1, pp. 113–156.

    Article  Google Scholar 

  11. Korotaev, S.M., On the possibility of a causal analysis of geophysical processes, Geomagn. Aeron., 1992, vol. 32, no. 1, pp. 27–33.

    Google Scholar 

  12. Korotaev, S.M., The role of different definitions of entropy in the causal analysis of geophysical processes and their application to electromagnetic induction in sea currents, Geomagn. Aeron., 1995, vol. 35, no. 3, pp. 116–125.

    Google Scholar 

  13. Korotaev, S.M., Experimental study of advanced correlation of some geophysical and astrophysical processes, Int. J. Comput. Anticip. Syst., 2006, vol. 17, pp. 61–76.

    Google Scholar 

  14. Korotaev, S.M., Causality and Reversibility in Irreversible Time, Sci. Res. Publ., 2011.

  15. Korotaev, S.M. and Serdyuk, V.O., The forecast of fluctuating large-scale natural processes and macroscopic correlations effect, Int. J. Comput. Anticip. Syst., 2008, vol. 20, pp. 31–46.

    Google Scholar 

  16. Korotaev, S.M., Serdyuk, V.O., and Sorokin, M.O., Effect of macroscopic nonlocality on geomagnetic and solar–ionospheric processes, Geomagn. Aeron. (Engl. Transl.), 2000, vol. 40, no. 3, pp. 323–330.

  17. Korotaev, S.M., Serdyuk, V.O., and Gorokhov, Yu.V., Forecast of geomagnetic and solar activity on nonlocal correlations, Dokl. Earth Sci., 2007, vol. 415, no. 6, pp. 975–978.

    Article  Google Scholar 

  18. Korotaev, S.M., Gaidash, S.P., Shneer, V.S., Serdyuk, V.O., Budnev, N.M., Mirgazov, R.R., Buzin, V.B., Khalezov, A.A., and Panfilov, A.I., Interannual changeability in the variations of the vertical component of the electric field in Lake Baikal, Izv., Phys. Solid Earth, 2011a, vol. 47, no. 2, pp. 147–153.

    Article  Google Scholar 

  19. Korotaev, S.M., Shneer, V.S., Gaidash, S.P., Budnev, N.M., Mirgazov, R.R., Khalezov, A.A., and Panfilov, A.I., The effect and precursors of the earthquake of August 28, 2008, in the vertical component of the electric field in Lake Baikal, Dokl. Earth Sci., 2011b, vol. 438, no. 2, pp. 842–845.

    Article  Google Scholar 

  20. Korotaev, S.M., Kiktenko, E.O., Gaidash, S.P., Budnev, N.M., Mirgazov, R.R., Panfilov, A.I., Khalezov, A.A., Serdyuk, V.O., and Shneer, V.S., Relationship between variations in the electric field’s vertical component in Lake Baikal and solar activity, Geomagn. Aeron. (Engl. Transl.), 2013a, vol. 53, no. 6, pp. 769–773.

  21. Korotaev, S.M., Budnev, N.M., Serdyuk, V.O., Gorohov, J.V., Kiktenko, E.O., Zurbanov, V.L., Mirgazov, R.R., Buzin, V.B., and Novysh, A.V., Preliminary results of the Baikal experiment on observations of macroscopic nonlocal correlations in reverse time, in Physical Interpretations of Relativity Theory, Moscow: BMSTU, 2013b, pp. 141–151.

    Google Scholar 

  22. Korotaev, S.M., Budnev, N.M., Gorokhov, Yu.V., Serdyuk, V.O., Kiktenko, E.O., and Panfilov, A.I., The Baikal experiment on the observation of forward nonlocal correlations, Vestn. Mosk. Gos. Tekh. Univ., Ser. Estetsv. Nauki, 2014, no. 1, pp. 35–53.

  23. Korotaev, S.M., Budnev, N.M., Serdyuk, V.O., Zurbanov, V.L., Mirgazov, R.R., Machinin, V.A., Kiktenko, E.O., Buzin, V.B., Novysh, A.V., and Portyanskaya, I.A., Results of vertical electric field monitoring in Lake Baikal, Izv., Phys. Solid Earth, 2015a, vol. 51, no. 4, pp. 602–611.

    Article  Google Scholar 

  24. Korotaev, S.M., Budnev, N.M., Serdyuk, V.O., Zurbanov, V.L., Mirgazov, R.R., Machinin, V.A., Kiktenko, E.O., Buzin, V.B., and Panfilov, A.I., Recent results of monitoring of the vertical component of the electrical field in Lake Baikal on the surface-bed baseline, Geomagn. Aeron. (Engl. Transl.), 2015b, vol. 55, no. 3, pp. 398–409.

  25. Korotaev, S.M., Serdyuk, V.O., Kiktenko, E.O., Budnev, N.M., and Gorohov, J.V., Results of the Baikal experiment of observations of macroscopic nonlocal correlations in reverse time, in Unified Field Mechanics, London: World Scientific, 2015c, pp. 366–373.

    Google Scholar 

  26. Korotaev, S.M., Budnev, N.M., Serdyuk, V.O., Kiktenko, E.O., and Gorokhov, Yu.V., Deepwater electromagnetic monitoring in Lake Baikal: Classical and nonclassical aspects, Vopr. Estestvozn., 2016, no. 2, pp. 41–53.

  27. Korotaev, S.M., Budnev, N.M., and Serdyuk, V.O., Advanced response of the Baikal macroscopic nonlocal correlation detector to solar activity, J. Phys.: Conf. Ser., 2017, vol. 918, 012003.

    Google Scholar 

  28. Korotaev, S.M., Serdyuk, V.O., and Budnev, N.M., Correlation between long-term variations in the vertical component of the electric field in Baikal and solar activity, Geomagn. Aeron. (Engl. Transl.), 2018a, vol. 58, no. 1, pp. 142–148.

  29. Korotaev, S.M., Serdyuk, V.O., and Budnev, N.M., Advanced response of the Baikal macroscopic nonlocal correlation detector to the heliogeophysical processes, in Unified Field Mechanics, vol. 2: Formulations and Empirical Tests, London: World Scientific, 2018b, pp. 375–380.

  30. Kruglyakov, M. and Kuvshinov, A., Using high-order polyinomal basis in 3-d em forward modeling based on volume integral equation method, Geoph. J. Intern, 2018, vol. 213, no. 2, pp. 1387–1401.

    Article  Google Scholar 

  31. Krylov, S.V., Mandel’baum, M.M., Mishen’kin, B.P., Mishen’kina, Z.R., Petrik, G.V., and Seleznev, B.C., Nedra Baikala (po seismicheskim dannym) (Mineral Resources Baikal (According to Seismic Data)), Novosibirsk: Nauka, 1981.

  32. Kumar, C.P.A., Panneerselvavam, C., Nair, K.U., Jeeva, K., Selvaraj, C., Jeyakumar, H.J., and Gurubaran, S., Measurement of atmospheric air–Earth current density from a tropical station using improvised Wilson’s plate antenna, Earth Planets Space, 2009, vol. 61, pp. 919–926.

    Article  Google Scholar 

  33. Kuznetsova, T.V., Tsirulnik, L.V., and Petrov, V.G., Change in the interplanetary magnetic field in different periods according to measurement data during the cosmic era, Izv. Akad. Nauk., Ser. Fiz., 2000, vol. 64, no. 9, pp. 1880–1886.

    Google Scholar 

  34. Kuznetsova, T.V. and Tsirulnik, L.V., Oscillations in the Sun–Earth system, in Proc. the 4th Int. Conf. “Problems of Geocosmos”, St. Petersburg, 3–8 June 2002, Vienna: Austrian Acad. Sci., 2002, pp. 8–11.

  35. Lean, J.L. and Brueckner, G.E., Intermediate-term solar periodicities: 100–500 days, Astrophys. J., 1989, vol. 337, pp. 568–578.

    Article  Google Scholar 

  36. Logachev, N.A., Main structural features and geodynamics of the Baikal rift zone, Fiz. Mezomekh., 1999., vol. 2, nos. 1–2, pp. 163–170.

    Google Scholar 

  37. Lunina, O.V., Gladkov, A.S., and Sherstyankin, P.P., A new electronic map of active faults for southeastern Siberia, Dokl. Earth Sci., 2010, vol. 433, no. 2, pp. 1016–1021.

    Article  Google Scholar 

  38. Mats, V.D., Ufimtsev, G.F., and Mandel’baum, M.M., Kainozoi Baikal’skoi riftovoi vpadiny: Stroenie i geologicheskaya istoriya (The Cenozoic of the Baikal Rif Zone: Structure and Geological History), Novosibirsk: SO RAN, 2001.

  39. Moldavanov, A.V., Stratospheric discharges during solar gamma flares, J. Phys. D: Appl. Phys., 2003, vol. 36, pp. L1–L4.

    Article  Google Scholar 

  40. Morgunov, V.A., Spatial inhomogeneities of the atmospheric electric field as a factor of lithospheric–ionospheric links, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electrical Interaction of Geospheric Shells), Moscow: OIFZ RAN, 2000, pp. 106–113.

  41. Moroz, Yu.F. and Moroz, T.A., The deep geoelectric section of the Baikal rift, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle, 2012, vol. 2, no. 20, pp. 114–126.

    Google Scholar 

  42. Morozov, V.N., Shvarts, Ya.M., and Shchukin, G.G., Global electric circuit: Physical and mathematical modeling and regular measurements in the lower atmosphere, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electrical Interaction of Geospheric Shells), Moscow: OIFZ RAN, 2000, pp. 55–67.

  43. Orekhova, D.A., Kruglyakov, M.S., Korotaev, S.M., and Budnev, N.M., Choice of an adequate geoelectric model for the Baikal rift from observations in the region of a deepwater electromagnetic monitoring experiment, in Aktual’nye problemy nauki Pribaikal’ya (Topical Problems in the Science of the Baikal Region), Irkutsk: IG SO RAN, 2017, vol. 2, pp. 3–15.

  44. Pankratov, O.V., Kuvshinov, A.V., Avdeev, A.B., Shneyer, V.S., and Trofimov, I.L., Ez-response, as a monitor of Baikal rift fault electrical resistivity: 3-D-modeling studies, Ann. Geophys., 2004, vol. 47, no. 1, pp. 151–156.

    Google Scholar 

  45. Panneerselvavam, C., Kumar, C.P.A., Nair, K.U., Selvaraj, C., Gurubaran, S., and Pathan, B.M., Instrumentation for the surface measurements of atmospheric electrical parameters at Maitri, Antarctica: First results, Earth Planets Space, 2010, vol. 62, pp. 545–549.

    Article  Google Scholar 

  46. Pospeev, A.V., The velocity structure of the upper mantle and regional deep thermodynamics of the Baikal rift zone, Geodyn. Tectonophys., 2012, vol. 3, no. 4, pp. 377–383.

    Article  Google Scholar 

  47. Rieger, E., Share, G.H., and Forrest, D.G., A 154 day periodicity in the occurrence of hard flares, Nature, 1984, vol. 312, pp. 625–627.

    Article  Google Scholar 

  48. Rozen, O.M., Manakov, A.V., and Zinchuk, N.N., Sibirskii kraton: Formirovanie, almazonosnost’ (The Siberian Craton: Formation and Diamond Potential), Moscow: Nauchnyi mir, 2006.

  49. Shneer, V.S., Gaidash, S.P., Trofimov, I.L., Korotaev, S.M., Kuznetsova, T.V., Tsirul’nik, L.B., Panfilov, A.I., Budnev, N.M., and Mirgazov, R.R., Long-term observations of the electric field vertical component in Lake Baikal (preliminary results), Izv., Phys. Solid Earth, 2007, vol. 43, no. 4, pp. 331–335.

    Article  Google Scholar 

  50. Trofimov, I.L., Shneer, V.S., and Gaidash, S.P., The possibility of monitoring of pore pressure of fluids in the Earth crust according to observations of electric field variations, Vestn. OGGGGN RAN, 2001, no. 4, pp. 3–7.

  51. Vinogradov, P.A., Measurement of the vertical component of the electrotelluric field of Lake Baikal, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1959, no. 1, pp. 83–86.

  52. Vinogradov, P.A., New experimental data on the vertical component of short-period oscillations in the field of terrestrial currents, Geol. Geofiz., 1960, no. 8, pp. 100–105.

  53. Zorin, Yu.A., Noveishaya struktura i izostaziya Baikal’skoi riftovoi zony i sopredel’nykh territorii (Recent Structure and Isostasy of the Baikal Rift Zone and Adjacent Territories), Moscow: Nauka, 1971.

Download references

ACKNOWLEDGMENTS

This work was fulfilled in the context of the fundamental research of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, under government task no. 0144-2014-0111 with support of the Russian Foundation for Basic Research and the Irkutsk Oblast Government, project no. 17-45-38805.

A part of the work was carried out using the equipment of the Tunkin Astrophysics Common Use Center of Irkutsk State University.

The authors thank G.V. Domogatskii, A.I. Panfilov, A.V. Zagorodnikov, A.V. Novysh, and V.B. Buzin for their assistance in performing the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Korotaev.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korotaev, S.M., Budnev, N.M., Serdyuk, V.O. et al. Baikal Electromagnetic Experiment. Izv. Atmos. Ocean. Phys. 54, 1569–1594 (2018). https://doi.org/10.1134/S000143381811004X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381811004X

Keywords:

  • marine geoelectrics
  • monitoring
  • flows
  • earthquakes
  • geosphere interaction
  • nonlocality
  • forecast
  • Baikal