Abstract
This paper describes a space experiment that is planned to be performed within the framework of the Russian project of the microsatellite CHIBIS AI to meaure ionospheric signal delays to determine the electron density and spatial fluctuations of the ionospheric and magnetospheric plasma. The measurements will be conducted by the phase interferometer method at two levels using signals from the onboard in-phase transmitters and GPS/GLONASS signals. The location of the radiation sources at two levels will make it possible to separate plasma variations in the ionosphere and inner magnetosphere–plasmasphere. The experimental results are of interest both for solving fundamental problems of near-Earth plasma physics and applied problems to improve positioning accuracy using global navigation systems.
This is a preview of subscription content,
to check access.



REFERENCES
Balan, N., Otsuka, Y., Tsugawa, T., Miyazak, S., Ogawa, T., and Shiokawa, K., Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity, Earth Planets Space, 2002, vol. 54, pp. 71–79. doi 10.1186/BF03352423
Beidou navigation satellite system signal in space. Interface control document. Open service signal (version 2.0). China satellite navigation office. December 2013. http://www.beidou.gov.cn/attach/2013/12/26/2013122 6b8a6182fa73a4ab3a5f107f762283712.pdf.
Belehaki, A., Jakowski, N., and Reinisch, B.W., Plasmaspheric electron content derived from GPS TEC and digisonde ionograms, Adv. Space Res., 2004, vol. 33, no. 6, pp. 833–837. doi 10.1016/j.asr.2003.07.008
Bondur, V.G. and Smirnov, V.M., Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems, Dokl. Earth Sci., 2005a, vol. 403, no. 5, pp. 736–740.
Bondur, V.G. and Smirnov, V.M., Monitoring of ionosphere variations during the preparation and realization of earthquakes using satellite navigation system data, in Proceedings of the 31st International Symposium on Remote Sensing of Environment (ISRSE), 2005b, pp. 372–375.
Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.
Cherniak, Iu.V., Zakharenkova, I.E., Krankowski, A., and Shagimuratov, I.I., Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum condition, Adv. Space Res., 2012, vol. 50, pp. 427–440.
Chernyshov, A.A., Chugunin, D.V., Mogilevsky, M.M., Moiseenko, I. L., Ilyasov, A.A., Vovchenko, V.V., Pulinets, S.A., Klimenko, M.V., Zakharenkova, I.E., Kostrov, A.V., Gushchin, M.E., and Korobkov, S.V., Approaches to studying the multiscale ionospheric structure using nanosatellites, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 1, pp. 72–79. doi 10.7868/ S0016794016010041
Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261. doi 10.7868/S0367292115030014
European GNSS (Galileo) open service Signal–in–space interface control document. European Union 2016, Document subject to terms of use and disclaimers p. i–ii, OS SIS ICD, Issue 1.3, December 2016. https:// www.gsc-europa.eu/system/files/galileo_documents/ Galileo-OS-SIS-ICD.pdf.
Gershman, B.N., Erukhimov, A.M., and Yashin, Yu.Ya., Volnovye yavleniya v ionosfere i kosmicheskoi plazme (Wave Phenomena in the Ionosphere and Space Plasma), Moscow: Nauka, 1984.
Global positioning systems directorate. Systems engineering and integration. Interface specification. IS–GPS–200. 5th September 2012. http://www.gps.gov/technical/icwg//IS-GPS-200G.pdf.
Global’naya navigatsionnaya sputnikovaya sistema GLONASS. Interfeisnyi kontrol’nyi dokument. Navigatsionnyi radiosignal v diapazonakh L1, L2 (redaktsiya 5.1) (Global Navigation Satellite System GLONASS. Interface Control Document. Navigation Radio Signal in L1 and L2 Ranges (Edition 5.1)), Moscow, 2008. http://www.aggf. ru/gnss/glon/ikd51ru.pdf.
Khabituev, D.S. and Shpynev, B.G., Variations in O+/N+ transition height over East Siberia from Irkutsk incoherent scatter data and GPS total electron content, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 1, pp. 107–117.
Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., Nosikov, I. A., Stepanov, A.E., Kotova, D.S., Vorobjev, V.G., and Yagodkina, O.I., Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects, Geomagn. Aeron. (Engl. Transl.), 2015a, vol. 55, no. 6, pp. 744–762.
Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., and Cherniak, Iu.V., The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results, Adv. Space Res., 2015b, vol. 55, no. 8, pp. 2077–2085. doi 10.1016/j.asr.2014.06.027
Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmosphere), Moscow: Nauka, 1984.
Lee, H.B., Jee, G., Kim, Y.H., and Shim, J.S., Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite, J. Geophys. Res., 2013, vol. 118, pp. 935–946. doi 10.1002/jgra.50130
Lemaire, J.F. and Gringauz, K.I., The Earth’s Plasmasphere, Cambridge: Cambridge Univ. Press, 1998.
Lunt, N., Kersley, L., and Bailey, G.J., The influence of the protonosphere on GPS observations: Model simulation, Radio. Sci., 1999, vol. 34, no. 3, pp. 725–732. doi 10.1029/1999RS900002
Manju, G., Ravindran, S., Devasia, C.V., Thampi, S.V., and Sridharan, R., Plasmaspheric electron content (PEC) over low latitude regions around the magnetic equator in the Indian sector during different geophysical conditions, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1066–1073.
Mosert, M., Gende, M., Brunini, C., and Altadill, D., Comparisons of IRI TEC predictions with GPS and digisonde measurements at Ebro, Adv. Space Res., 2007, vol. 39, pp. 841–847.
Noveishie issledovaniya rasprostraneniya radiovoln vdol' zemnoi poverkhnosti (Recent Studies of Radiowave Propagation Along the Earth’s Surface), Mandel’shtam, L.I. and Papaleksi, N.D., Eds., Moscow–Leningrad, 1945.
Novikov, L.S., Osnovy ekologii okolozemnogo kosmicheskogo prostranstva (Fundamentals of Ecology of the Near-Earth Space), Moscow: Universitetskaya Kniga, 2006.
Petrukovich, A.A., Mogilevsky, M.M., Chernyshov, A.A., and Shklyar, D.R., Some aspects of magnetosphere–ionosphere relations, Phys.-Usp., 2015, vol. 58, no. 6, pp. 606–611. doi 10.3367/UFNe.0185.201506i.0649
Quasi-zenith satellite system navigation service interface specification for QZSS (IS-QZSS). V1.5, Japan Aerospace Exploration Agency. March 27, 2013. http://qz-vision. jaxa.jp/USE/is-qzss/DOCS/IS-QZSS_15_E.pdf.
Singh, A.K., Singh, R.P., and Siingh, D., State studies of Earth’s plasmasphere: A review, Planet. Space Sci., 2011, vol. 59, no. 9, pp. 810–834.
Yeh, K.C. and Liu, C.H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, vol. 70, no. 4, pp. 24–64.
Yizengaw, E., Moldwin, M.B., Galvan, D., Iijima, B.A., Komjathy, A., and Mannucci, A.J., Global plasmaspheric TEC and its relative contribution to GPS TEC, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1541–1548. doi 10.1016/j.jastp.2008.04.022
Zolotov, O.V., Earthquake effects in ionospheric TEC variations, Cand. Sci. (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State University, 2015.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by O. Pismenov
Rights and permissions
About this article
Cite this article
Kosov, A.S., Chernyshov, A.A., Mogilevsky, M.M. et al. Space Experiment to Measure Ionospheric Radio Signal Delays. Izv. Atmos. Ocean. Phys. 54, 1282–1290 (2018). https://doi.org/10.1134/S0001433818090499
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001433818090499