Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1039–1049 | Cite as

Steric Level Fluctuations and Deep Convection in the Labrador and Irminger Seas

  • T. V. BelonenkoEmail author
  • A. M. Fedorov
USE OF SPACE INFORMATION ABOUT THE EARTH
  • 7 Downloads

Abstract

The paper considers steric level fluctuations in the northern Atlantic Ocean. We use a method that combines AVISO altimetry and GRACE gravity measurements to evaluate steric level fluctuations and obtain estimates of steric variations in the Labrador and Irminger seas for 2003–2015. The range of steric fluctuations in the Labrador Sea is from –11 to 10 cm, and in the Irminger Sea is from –11 to 12 cm. We estimate trends of steric fluctuations, which indicate a significant increase in the steric component of variability in the level of the North Atlantic. We propose a method for determining regions of deep convection in the Labrador and Irminger seas based on the minimum values of the steric level anomalies (the seasonal component has been excluded) from combined satellite measurement data. Possible spots of deep convection are determined in the Labrador and Irminger seas and shown on steric level fluctuation maps for different years. We demonstrate that deep convection was not manifested in the Labrador Sea in 2006, and there was a general weakening in deep convection processes in the North Atlantic after 2008.

Keywords:

altimetry AVISO GRACE deep convection Labrador Sea Irminger Sea steric level fluctuations trends 

Notes

ACKNOWLEDGMENTS

The study was financed by the Russian Science Foundation, grant no. 17-17-01151.

REFERENCES

  1. 1.
    Antonov, J.I., Levitus, S., and Boyer, T.P., Steric sea level variations during 1957–1994: Importance of salinity, J. Geophys. Res., 2002, vol. 107, no. C12, 8013. doi 10.1029/2001JC000964CrossRefGoogle Scholar
  2. 2.
    Belonenko, T.V. and Koldunov, A.V., Steric level fluctuations in the northwestern Pacific Ocean, Vestn. S.-Peterb. Univ., Ser. 7: Geol., Geogr., 2006, no. 3, pp. 81–88.Google Scholar
  3. 3.
    Belonenko, T.V., Fedorov, A.M., Bashmachnikov, I.L., and Fuks, V.R., Trends in the current intensity in the Labrador and Irminger seas from satellite altimetry, Issled. Zemli Kosmosa, 2018, no. 2, pp. 3–12. doi 10.7868/S020596141802001XGoogle Scholar
  4. 4.
    Bersch, M., North Atlantic Oscillation—induced changes of the upper layer circulation in the northern North Atlantic Ocean, J. Geophys. Res., 2002, vol. 107, no. C10, 3156. doi 10.1029/2001JC000901CrossRefGoogle Scholar
  5. 5.
    Chambers, D.P., Observing seasonal steric sea level variations with grace and satellite altimetry, J. Geophys. Res., 2006, vol. 111, C03010. doi 10.1029/2005JC002914CrossRefGoogle Scholar
  6. 6.
    de Jong, M.F., van Aken, H.M., Våge, K., and Pickart, R.S., Convective mixing in the central Irminger Sea: 2002–2010, Deep Sea Res., 2012, vol. 63, no. 1, pp. 36–51. doi 10.1016/j.dsr.2012.01.00CrossRefGoogle Scholar
  7. 7.
    Dickson, R.R., Lazier, J., Meincke, J., Rhines, P., and Swift, J., Long-term coordinated changes in the convective activity of the North Atlantic, Prog. Oceanogr., 1996, vol. 38, pp. 241–295. doi 10.1016/S0079–6611(97)00002-5CrossRefGoogle Scholar
  8. 8.
    Dickson, R., Yashayev, I., Meincke, J., Turrell, B., Dye, S., and Holfort, J., Rapid freshening of the deep North Atlantic Ocean over the past four decades, Nature, 2002, vol. 416, pp. 832–837. doi 10.1038/416832aCrossRefGoogle Scholar
  9. 9.
    Falina, A., Sarafanov, A., and Sokov, A., Variability and renewal of Labrador Sea water in the Irminger Basin in 1991–2004, J. Geophys. Res., 2007, vol. 112, no. C1, C01006. doi 10.1029/2005JC003348Google Scholar
  10. 10.
    Fu, L.L. and Le Traon, P.-Y., Satellite altimetry and ocean dynamics, C. R. Geosci., 2006, vol. 338, nos. 14–15, pp. 1063–1076. doi 10.1016/j.crte.2006.05.015CrossRefGoogle Scholar
  11. 11.
    García, D., Ramillien, G., Lombard, A., and Cazenave, A., Steric sea-level variations inferred from combined Topex/Poseidon altimetry and GRACE Gravimetry, Pure Appl. Geophys., 2007, vol. 164, no. 4, pp. 721–731.CrossRefGoogle Scholar
  12. 12.
    Gelderloos, R., Katsman, C.A., and Våge, K., Detecting Labrador Sea water formation from space, J. Geophys. Res.: Oceans, 2013, vol. 118, pp. 2074–2086. doi 10.1002/jgrc.20176CrossRefGoogle Scholar
  13. 13.
    Gladyshev, S.V., Gladyshev, V.S., Falina, A.S., and Sarafanov, A.A., Winter convection in the Irminger Sea in 2004–2014, Oceanology (Engl. Transl.), 2016, vol. 56, no. 3, pp. 326–335.Google Scholar
  14. 14.
    Hakkinen, S. and Rhines, P.B., Decline of subpolar North Atlantic circulation during the 1990s, Science, 2004, vol. 309, pp. 555–559.CrossRefGoogle Scholar
  15. 15.
    Hakkinen, S. and Rhines, P.B., Shifting surface currents of the northern north atlantic ocean, J. Geophys. Res., 2009, vol. 114, C04005.CrossRefGoogle Scholar
  16. 16.
    Han, G., Chen, N., Kuo, C.Y., Shum, C.K., and Ma, Z., Interannual and decadal sea surface height variability over the northwest Atlantic slope, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 2016. doi 10.1109/ JSTARS.2016.2584778Google Scholar
  17. 17.
    Herrmann, M., Bouffard, J., and Beranger, K., Monitoring open ocean deep convection from space, Geophys. Res. Lett., 2009, vol. 36, no. L03, 606. doi 10.1029/ 2008GL036422CrossRefGoogle Scholar
  18. 18.
    Lee, T., Hakkinen, S., Kelly, K., Qiu, B., Bonekamp, H., and Lindstrom, E.J., Satellite observations of ocean circulation changes associated with climate variability, Oceanography, 2010, vol. 23, no. 4, pp. 70–81. doi 10.5670/oceanog.2010.06CrossRefGoogle Scholar
  19. 19.
    Lombard, A., Garcia, D., Ramillien, G., Cazenave, A., Biancale, R., Lemoine, J.M., Flechtner, F., Schmidt, R., and Ishii, M., Estimation of steric sea level variations from combined GRACE and Jason-1 data, Earth Planet Sci. Lett., 2007, vol. 254, pp. 194–202.CrossRefGoogle Scholar
  20. 20.
    Provotorov, P.P., Steric sea-level fluctuations, in Kolebaniya urovnya v moryakh (Level Fluctuations in Seas), St. Petersburg, 2003, pp. 129–138.Google Scholar
  21. 21.
    Våge, K., Pickart, R.S., Thierry, V., Reverdin, G., Lee, C.M., Petrie, B., Agnew, T.A., Wong, A., and Ribergaard, M.H., Surprising return of deep convection to the subpolar North Atlantic ocean in winter 2007–2008, Nat. Geosci., 2009, vol. 2, pp. 67–72.CrossRefGoogle Scholar
  22. 22.
    Volkov, D.L., Landerer, F.W., and Kirillov, S.A., The genesis of sea level variability in the Barents Sea, Cont. Shelf Res., 2013, vol. 66, pp. 92–104. doi 10.1016/j.csr.2013.07.007CrossRefGoogle Scholar
  23. 23.
    Yashayaev, I. and Loder, J.W., Enhanced production of Labrador Sea water in 2008, Geophys. Res. Lett., 2009, vol. 3, L0160. doi 10.1029/2008GL036162Google Scholar
  24. 24.
    Zelenko, A.A. and Resnyansky, Yu.D., Deep convection in the ocean general circulation model: Variability on the diurnal, seasonal, and interannual time scales, Oceanology (Engl. Transl.), 2007, vol. 47, no. 2, pp. 191–204.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations