Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 7, pp 661–666 | Cite as

Prevention of Shield-Induced Desynchronosis in Invertebrates by a Variable Magnetic Field of Extremely Low Frequency

  • N. A. TemuryantsEmail author
  • K. N. TumanyantsEmail author
  • A. S. Kostyuk
  • N. S. Yarmolyuk
  • E. N. Tumanyants


We have found that planarians Dugesia tigrina and snails Helix albescens develop desynchronosis under conditions of moderate ferromagnetic shielding at which both variable and constant components of the geomagnetic field are inhibited. Desynchronosis is diagnosed by changes in the infradian rhythms of the movements of the planarians and the nociception parameters of the snails. We observe the following changes: a decrease in the number of periods or their changes and phase shifts, which are especially pronounced in the shortest periods. In the case of an additional effect on animals of an alternating magnetic field of 8 Hz frequency by the induction of 50 nT under shielding conditions, we observe no change in the rhythmic processes of the infradian range in invertebrates. Thus, we conclude that a variable magnetic field of 8 Hz prevents the development of shield-induced desynchronosis.


ferromagnetic shielding variable magnetic field with a frequency of 8 Hz prevention desynchronosis infradian rhythm speed of movement nociception planarians snails 



This research was done by the financial support within an initiative part of the state assignment no. 6.5452.2017/8.9 of the Ministry of Education and Science of the Russian Federation in the sphere of scientific activity of a subject “The temporary organization of physiological systems of the human-being and animals: phenomenology and generation mechanisms and regulation of micro and mesorhythms”.

The research has been conducted on the equipment of CCC of FSAEI of HE—Collective Creativity Center of Federal State Autonomous Educational Institution of Higher Education. “CFU after V.I. Vernadsky” “Experimental Biology and Biophysics”.


  1. 1.
    Adey, W.R., Frequency and power window in tissue interactions with weak electromagnetic fields, Proc. IEEE, 1980, vol. 68, no. 1, pp. 119–125.CrossRefGoogle Scholar
  2. 2.
    Avakyan, S.V., Microwave radiation of the ionosphere as a factor in the way solar flares and geomagnetic storms act on biosystems, J. Opt. Technol., 2005, vol. 72, no. 8, pp. 608–614.CrossRefGoogle Scholar
  3. 3.
    Betskii, O.V., Kislov, V.V., and Lebedeva, N.N., Millimetrovye volny i zhivye sistemy (Millimeter Waves and Living Systems), Moscow: URSS, 2004.Google Scholar
  4. 4.
    Borodin, Yu.I. and Letyagin, A.Yu., Response of circadian rhythms of the lymphoid system to deep screening from the Earth’s geomagnetic field, Byull. Eksp. Biol. Med., 1990, no. 2, pp. 191–193.Google Scholar
  5. 5.
    Breus, T.K., Halberg, F., and Kornélissen, G., Effect of solar activity on the physiological rhythms of biological systems, Biofizika, 1995, vol. 40, no. 4, pp. 737–747.Google Scholar
  6. 6.
    Chibisov, S.M., Ovchinnikova, L.K., and Breus, T.K., Biologicheskie ritmy serdtsa i “vneshnii” stress (Biological Rhythms of the Heart and “Outer” Stress), Moscow: RUDN, 1998.Google Scholar
  7. 7.
    Chirkova, E.N., Suslov, L.S., Avramenko, M.M., and Krivoruchko, G.E., Monthly and daily biorhythms of blood serum amylase in healthy men and their relation with external rhythms, Lab. Delo, 1990, no. 4, pp. 40–44.Google Scholar
  8. 8.
    Chuyan, E.N., Temur’yants, N.A., Moskovchuk, O.B., Chirskii, N.V., Verko, N.P., Tumanyants, E.N., and Ponomareva, V.P., Fiziologicheskie mekhanizmy biologicheskikh effektov nizkointensivnogo EMI KVCh (Physiological Mechanisms of Biological Effects of Low-Intensity EMI EHF), Simferopol: El’in’o, 2003.Google Scholar
  9. 9.
    Demtsun, N.A., Tumanyants, K.N., and Temur’yants, N.A., Effects of low-intensity EMI EHF on regenerating the planarian Dugesia tigrina, Uch. Zap. Tavr. Nats. Univ. im. V. I. Vernadskogo, Ser. Biol. Khim., 2009, vol. 22, no. 2, pp. 33–39.Google Scholar
  10. 10.
    Denisenkova, I.V., Piskunova, G.M., and Chemeris, N.K., Stimulated locomotion activity of the planarian Dugesia tigrina in the natural magnetic field and during its compensation, Vestn. Nov. Med. Tekhnol., 1997, vol. 4, no. 4, pp. 16–18.Google Scholar
  11. 11.
    Devyatkov, N.D., Millimetrovye volny i ikh rol’ v protsessakh zhiznedeyatel’nosti (Millimeter Waves and Their Role in Vital Activities), Moscow: Radio i svyaz’, 1991.Google Scholar
  12. 12.
    Diatroptov, M.E., Regularities of the infradian rhythms of the change in feathering and thyroxine level in passerine birds. Effect of the daylight duration, Nauka Tekhnol. Razrab., 2013, vol. 92, no. 4, pp. 31–48.Google Scholar
  13. 13.
    Diatroptov, M.E., Kondashevskaya, M.V., and Maka-rova, O.V., Infradian rhythms of the indicators of physiological and metabolic processes in Wistar male rats, Ross. Fiziol. Zh. im. I. M. Sechenova, 2012, no. 3, pp. 410–416.Google Scholar
  14. 14.
    Duda, S.G., Zaslavskaya, R.M., and Kononova, A.F., On the chronotherapy of patients stenocardiac and cardiologic, in Vsesoyuznaya konferentsiya “Aktual’nye problemy otsenki farmakologicheskoi aktivnosti khimicheskikh soedinenii: Tezisy dokladov (Book of Abstracts of the All-Union Conference “Topical Problems in Estimating the Pharmacological Activity of Chemical Compounds”), 1981, vol. 1, pp. 121–123.Google Scholar
  15. 15.
    Emel’yanov, I.P., Formy kolebaniya v bioritmologii (Oscillation Forms in Biorhythmology), Novosibirsk: Nauka, 1976.Google Scholar
  16. 16.
    Evropeiskaja konventsiya o zashchite pozvonochnykh zhivotnykh, ispol’zuemykh dlya eksperimentov ili v inykh nauchnykh tselyakh (European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes), ETS No. 123, Strasbourg, March 18, 1986. Scholar
  17. 17.
    Halberg, F., Cornélissen, G., Regal, P., Otsuka, K., Wang, Z., Katinas, G.S., Siegelova, J., Homolka, P., Prikryl, P., Chibisov, S.M., Holley, D.C., Wendt, H.W., Bingham, C., Palm, S.L., Sonkowsky, R.P., and Sothern, R.B., Chronoastrobiology: Proposal, nine conferences, heliogeomagnetics, transyears, near-weeks, near-decades, phylogenetic and ontogenetic memories, Biomed. Pharmacother., 2004, vol. 58, pp. 150–187.CrossRefGoogle Scholar
  18. 18.
    Jenrow, K.A., Smith, C.H., and Liboff, A.R., Weak extremely low frequency magnetic fields and regeneration in the planarian Dugesia tigrina, Bioelectromagnetics, 1995, vol. 16, pp. 106–112.CrossRefGoogle Scholar
  19. 19.
    Komarov, F.I., Breus, T.K., and Rapoport, S.I., Medical and biological effects of solar activity, Vestn. Akad. Med. Nauk, 1994, vol. 9, no. 11, pp. 37–50.Google Scholar
  20. 20.
    Makeev, V.B. and Temur’yants, N.A., Study of the frequency dependence of biological efficiency of the magnetic field in the geomagnetic field range (0.01–100 GHz), Probl. Kosm. Biol., 1982, vol. 43, pp. 116–128.Google Scholar
  21. 21.
    Martynyuk, V.S. and Temur’yants, N.A., ELF magnetic fields as a factor of modulation and synchronization of infradian biorhythms in animals, Geofiz. Protsessy Biosfera, 2008, vol. 7, no. 1, pp. 36–50.Google Scholar
  22. 22.
    Martynyuk, V.S., Vladimirskii, B.M., and Temur’yants, N.A., Biological rhythms and electromagnetic fields of the environment, Geofiz. Protsessy Biosfera, 2006, vol. 5, no. 1, pp. 5–23.Google Scholar
  23. 23.
    Mulligan, B.P., Gang, N., Parker, G.H., and Persinger, M.A., Magnetic field intensity/melatonin–molarity interactions: Experimental support with planarian (Dugesia sp.) activity for a resonance-like process, Open J. Biophys., 2012, no. 2, pp. 137–143.Google Scholar
  24. 24.
    Prato, F.S., Non-thermal extremely low frequency magnetic field effects on opioid related behaviors: Snails to humans, mechanisms to therapy, Bioelectromagnetics, 2015, vol. 36, no. 5, pp. 333–348.CrossRefGoogle Scholar
  25. 25.
    Prato, F.S. and Carson, J.J.L., Behavioural evidence that magnetic field effects in the land snail, Cepaea nemoralis, might not depend on magnetite or induced electric currents, Bioelectromagnetics, 1996, vol. 17, pp. 123–130.CrossRefGoogle Scholar
  26. 26.
    Rapoport, S.I., Malinovskaya, N.K., and Oraevskii, V.N., Influence of oscillations in the Earth’s natural magnetic field on melatonin production in patients of ischemic heart disease, Klin. Med., 1997, no. 6, pp. 24–26.Google Scholar
  27. 27.
    Schmidt-Nielsen, K., Animal Physiology: Adaptation and Environment, Cambridge: Cambridge University Press, 1979; Moscow: Mir, 1982.Google Scholar
  28. 28.
    Shabatura, N.N., The mechanism of the origin of infradian biological rhythms, Usp. Fiziol. Nauk, 1989, vol. 20, no. 3, pp. 83–103.Google Scholar
  29. 29.
    Strigun, L., Chirkova, E., Grigoreva, G., Gromova, L.A., Yakunina, M.A., Nemov, V.V., and Ivanova, A.N., Chronobiological analysis of peripheral lymphocyte dehydrogenase activities in rats with Walker 256 carcinosarcoma, Anti-Cancer Drugs, 1991, no. 2, pp. 305–310.Google Scholar
  30. 30.
    Temuryants, N.A. and Demtsun, N.A., Seasonal differences in the regeneration of planarians under conditions of long-term electromagnetic shielding, Biophysics, 2010, vol. 55, no. 4, pp. 628–632.CrossRefGoogle Scholar
  31. 31.
    Temuryants, N.A. and Kostyuk, A.S., The role of the opioid system at different stages of modification of shielding-induced changes in nociception of land mollusks by weak ELF alternating magnetic field, Uch. Zap. Tavr. Nats. Univ. im. V. I. Vernadskogo, Ser. Biol. Khim., 2012, vol. 25, no. 1, pp. 203–213.Google Scholar
  32. 32.
    Temuryants, N.A. and Kostyuk, A.S., Influence of an ELF variable magnetic field on the activity of the opioid system of mollusks under long-term electromagnetic shielding, Geofiz. Protsessy Biosfera, 2015, vol. 14, no. 1, pp. 42–52.Google Scholar
  33. 33.
    Temuryants, N.A., Vladimirskii, B.M., and Tishkin, O.G., Sverkhnizkochastotnye elektromagnitnye signaly v biologicheskom mire (ELF Electromagnetic Signals in the Biological World), Kiev: Naukova dumka, 1992a.Google Scholar
  34. 34.
    Temuryants, N.A., Makeev, V.B., and Malygina, V.I., The effect of weak variable ELF alternating magnetic fields on infradian rhythms in the rat sympathoadrenal system, Biofizika, 1992b, vol. 37, no. 4, pp. 653–655.Google Scholar
  35. 35.
    Temuryants, N.A., Martynyuk, V.S., Chuyan, E.N., Minko, V.A., and Brusil, I.A., Changes in the infradian rhythmicity of blood lymphocyte dehydrogenases in rats exposed to an extremely low frequency variable magnetic field, Biophysics, 2004, vol. 49, no. 1, pp. 26–31.Google Scholar
  36. 36.
    Temuryants, N.A., Baranova, M.M., and Demtsun, N.O., Ukr. Patent 48095, Byull. Izobret., 2010a, no. 5.Google Scholar
  37. 37.
    Temuryants, N.A., Vishnevs’kii, V.G., Kostyuk, O.S., and Makeev, V.B., Ukr. Patent 48094, Byull. Izobret., 2010b, no. 5.Google Scholar
  38. 38.
    Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Dynamics and infradian rhythmics of thermal/pain sensitivity of Helix albescens mollusks under the action of electromagnetic fields, Neurophysiology, 2010c, vol. 42, no. 4, pp. 276–285.CrossRefGoogle Scholar
  39. 39.
    Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Participation of melatonin in the change in nociception of mollusks and mice under long-term electromagnetic shielding, Ross. Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 99, no. 11, pp. 1333–1341.Google Scholar
  40. 40.
    Tiras, Kh.P., Srebnitskaya, L.K., Il’yasova, E.N., and Lednev, V.V., The influence of a weak combined magnetic field on the rate of regeneration in planarians Dugesia tigrina, Biofizika, 1996, vol. 41, no. 4, pp. 826–831.Google Scholar
  41. 41.
    Tumanyants, K.N., Chuyan, E.N., Kostyuk, A.S., and Tumanyants, E.N., Effect of low-intensity VHF electromagnetic radiation on infradian rhythms of nociception of H. albescens mollusks at their electromagnetic shielding, in Proceedings of the International Scientific and Practical Conference “Fundamental Science and Technology: Advanced Development”, North Charleston, USA, 2015, vol. 1, pp. 8–13.Google Scholar
  42. 42.
    Vinogradova, L.I., The circadian rhythm of the human cardiovascular system under normal conditions and at disorders of central vegetative regulation, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 1976.Google Scholar
  43. 43.
    Wang, D.L., Wang, X.S., Xiao, R., Liu, H., and He, R.Q., Tubulin assembly is disordered in a hypogeomagnetic field, Biochem. Biophys. Res. Commun., 2008, vol. 376, no. 2, pp. 363–368.CrossRefGoogle Scholar
  44. 44.
    Wever, R.A., Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies, Int. J. Biometeorol., 1973, vol. 17, no. 3, pp. 227–232.CrossRefGoogle Scholar
  45. 45.
    Zamoshchina, T.A., Krivova, N.A., Khodanovich, M.Yu., Trukhanov, K.A., Tukhvatulin, R.T., Zaeva, O.B., Zelenskaya, A.E., and Gul’, E.V., Influence of simulated hypomagnetic environment in a distant space flight on the rhythmic structure of rat’s behavioral activity, Aviakosm. Ekol. Med., 2012, vol. 46, no. 1, pp. 17–23.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Crimean Federal University, SimferopolRussia
  2. 2.Research Center of Experimental Physiology and Biotechnology, Taurida Academy, Vernadsky Crimean Federal UniversitySimferopolRussia
  3. 3.Institute of Biology, Educational and Scientific Center, Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations