Skip to main content

Internal Tide in the Drake Passage

Abstract

Internal tidal waves in the Drake Passage have been studied on the basis of moored measurements, numerical modeling, and dispersion relation calculated from the profiles of temperature and salinity. Two main generation sources of internal tides are found: over a submarine elevation and over the Shackleton Ridge. The wavelength based on different estimates is close to 120 km. The numerical model shows that internal perturbations near submarine slopes are in the form of beams, while at a distance of approximately one wavelength the beams diffuse and the beam structure transforms to lower modes. The amplitude of waves near submarine slopes is close to 100 m and decreases to 30 m in the course of their propagation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. P. G. Baines, “On internal tide generation models,” Deep-Sea Res. 29, 307–338 (1982).

    Article  Google Scholar 

  2. C. Garrett and E. Kunze, “Internal tide generation in the deep ocean,” Annu. Rev. Fluid Mech. 39, 57–87 (2007).

    Article  Google Scholar 

  3. E. G. Morozov and V. I. Vlasenko, “Extreme tidal internal waves near the Mascarene Ridge,” J. Mar. Syst. 9 (3–4), 203–210 (1996).

    Article  Google Scholar 

  4. E. G. Morozov, “Semidiurnal internal wave global field,” Deep Sea Res. 42 (1), 135–148 (1995).

    Article  Google Scholar 

  5. V. V. Navrotsky, V. Yu. Liapidevskii, and E. P. Pavlova, “Features of internal waves in a shoaling thermocline,” Int. J. Geosci. 4, 871–879 (2013).

    Article  Google Scholar 

  6. E. G. Morozov, Oceanic Internal Tides. Observations, Analysis, and Modeling (Springer, 2018).

    Book  Google Scholar 

  7. R. Yu. Tarakanov, “The Scotia Sea and the Drake Passage as an orographic barrier for the Antarctic Circumpolar Current,” Oceanology (Engl. Transl.) 52 (2) 157–170 (2012).

  8. R. Yu. Tarakanov, “Jets of the Antarctic Circumpolar Current in the central part of the Drake Passage based on the survey data in October–November of 2008,” Oceanology (Engl. Transl.) 54 (1), 1–7 (2014).

  9. G. G. Panteleev, M. N. Koshlyakov, E. G. Morozov, R. Yu. Tarakanov, A. Yu. Goldin, A. Yu. Shcherbina, and M. Ikeda, “Numerical modeling of currents in the Drake Passage with assimilation of the experimental data of 2003,” Oceanology (Engl. Transl.) 46 (6), 772–783 (2006).

  10. K. J. Heywood, J. L. Collins, C. W. Hughes, and I. Vassie, “On the detectability of internal tides in Drake Passage,” Deep-Sea Res. 54 (11), 1972–1984 (2007).

    Article  Google Scholar 

  11. V. V. Bulatov and Yu. V. Vladimirov, “Far fields of internal gravity waves from oscillating sources of disturbances,” Izv. Atmos. Ocean. Phys. 47 (2), 229–232 (2011).

    Article  Google Scholar 

  12. V. V. Bulatov and Yu. V. Vladimirov, “Far fields of internal gravity waves in a stratified liquid of varying depth,” Izv. Atmos. Ocean. Phys. 49 (3), 329–333 (2013).

    Article  Google Scholar 

  13. N. F. Barber, “The directional resolving power of an array of wave detectors,” in Ocean Wave Spectra (Prentice Hall, Englewood Cliffs, New Jersey, 1963), pp. 137–150.

    Google Scholar 

  14. V. I. Vlasenko, “Non-linear model for the generation of baroclinic tides over extensive inhomogeneities of the seabed relief,” Sov. J. Phys. Oceanogr. 3 (6), 417–424 (1992).

    Article  Google Scholar 

  15. V. Vlasenko, N. Stashchuk, and K. Hutter, Baroclinic Tides: Theoretical Modeling and Observational Evidence (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  16. E. G. Morozov, K. Trulsen, M. G. Velarde, and V. I. Vlasenko, “Internal tides in the strait of Gibraltar,” J. Phys. Oceanogr. 32 (11), 3193–3206 (2002).

    Article  Google Scholar 

  17. G. M. Torgrimson and B. M. Hickey, “Barotropic and baroclinic tides over the continental slope and shelf off Oregon,” J. Phys. Oceanogr. 9 (5), 945–961 (1979).

    Article  Google Scholar 

  18. P. H. LeBlond and L. A. Mysak, Waves in the Ocean (Elsevier, Amsterdam, 1978).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed within the state task of the Federal Agency of Scientific Organizations of Russia (theme no. 0149-2018-0003) and supported in part by the Russian Science Foundation (project no. 16-17-10149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Morozov.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morozov, E.G. Internal Tide in the Drake Passage. Izv. Atmos. Ocean. Phys. 54, 608–615 (2018). https://doi.org/10.1134/S0001433818060117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818060117

Keywords:

  • internal tide
  • moorings
  • dispersion relation
  • numerical model
  • bottom topography