Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 581–593 | Cite as

Seasonal Variability and Hydrodynamic Regimes of the Novaya Zemlya Bora

  • V. V. EfimovEmail author
  • O. I. Komarovskaya


The features of bora formation in the region of Novaya Zemlya surrounded by the Barents and Kara seas, differing in hydrometeorological conditions, are considered. The annual course of average magnitude of buoyancy frequency estimation at the points of the Barents and Kara seas has been constructed. The necessary conditions of bora development in the winter and summer periods are considered. The value of Froude number Fr is used as the main criterion. The statistics of bora cases made on the basis of joint distributions of values of buoyancy frequency and wind speed is given. Results of numerical simulations using the WRF-ARW model for three (small, intermediate, and large) values of Froude number Fr are given. The features of the formation of bora hydrodynamic characteristics for cases conventionally referred to shallow and deep bora types are considered. Estimations of orographic drag and its separate components are given.


Novaya Zemlya bora reanalysis WRF-ARW model buoyancy frequency Froude number orographic drag 



This study was carried out as part of the governmental quota, project no. 0827-2018-0001.


  1. 1.
    A. Gill, Atmosphere–Ocean Dynamics, Vol. 1 (Academic, London, 1982; Mir, Moscow, 1986).Google Scholar
  2. 2.
    V. V. Efimov and O. I. Komarovskaya, “The Novaya Zemlya bora: Analysis and numerical modeling,” Izv., Atmos. Ocean. Phys. 54 (1), 73–85 (2018).CrossRefGoogle Scholar
  3. 3.
    The Novorossiysk Bora, Ed. by A. M. Gusev (Morskoi Girofiz. Inst. AN SSSR, 1959) [in Russian].Google Scholar
  4. 4.
    Shestakova A.A. “Numerical simulation of wave drag during downslope windstorms in different regions of Russia,” Russ. Meteorol. Hydrol. 43 (3), 192–196 (2018).CrossRefGoogle Scholar
  5. 5.
    M. Årthun and C. Schrum, “Ocean surface heat flux variability in the Barents Sea,” J. Mar. Syst. 83, 88–98 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Årthun, R. B. Ingvaldsen, L. H. Smedsrud, and C. Schrum, “Dense water formation and circulation in the Barents Sea,” Deep Sea Res. I 58 (8), 801–817 (2011).CrossRefGoogle Scholar
  7. 7.
    T. L. Clark and W. R. Peltier, “Critical level reflection and the resonant growth of nonlinear mountain waves,” J. Atmos. Sci. 41, 3122–3134 (1984).CrossRefGoogle Scholar
  8. 8.
    D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137 (656), 553–597 (2011).CrossRefGoogle Scholar
  9. 9.
    D. R. Durran, “Another look at downslope windstorms. Part 1. The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid,” J. Atmos. Sci. 43, 2527–2543 (1986).CrossRefGoogle Scholar
  10. 10.
    S. D. Eckermann, J. Lindeman, J. Broutman, et al., “Momentum fluxes of gravity waves generated by variable Froude number flow over three-dimensional obstacles,” J. Atmos. Sci. 67, 2260–2278 (2010).CrossRefGoogle Scholar
  11. 11.
    C. C. Epifano and R. Rotunno, “The dynamic of orographic wake formation in flows with upstream blocking,” J. Atmos. Sci. 62, 3127–3150 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Gohm, G. J. Mayr, A. Fix, et al., “On the onset of bora and the formation of rotors and jumps near a mountain gap,” Q. J. R. Meteorol. Soc. 134, 21–46 (2008).CrossRefGoogle Scholar
  13. 13.
    B. Grisogono and D. Belušíć, “A review of recent advances in understanding the meso- and microscale properties of the severe bora wind,” Tellus 61 (1), 1–16 (2009).CrossRefGoogle Scholar
  14. 14.
    J. B. Klemp and D. R. Durran, “Numerical modelling of bora winds,” Meteorol. Atmos. Phys. 36, 215–227 (1987).CrossRefGoogle Scholar
  15. 15.
    J. B. Klemp and D. K. Lilly, “The dynamics of wave-induced downslope winds,” J. Atmos. Sci. 32, 320–339 (1975).CrossRefGoogle Scholar
  16. 16.
    D. K. Lilly and J. B. Klemp, “The effects of terrain shape on nonlinear hydrostatic mountain waves,” J. Fluid Mech. 95, 241–261 (1979).CrossRefGoogle Scholar
  17. 17.
    Y.-L. Lin, Mesoscale Dynamics (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
  18. 18.
    P. Markowski and Y. Richardson, Mesoscale Meteorology in Midlatitudes (John Wiley, 2010).CrossRefGoogle Scholar
  19. 19.
    G. W. K. Moore, “The Novaya Zemlya bora and its impact on Barents Sea air–sea interaction,” Geophys. Res. Lett. 40, 3462–3467 (2013).CrossRefGoogle Scholar
  20. 20.
    D. S. Phillips, “Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountain,” J. Atmos. Sci. 41, 1073–1084 (1984).CrossRefGoogle Scholar
  21. 21.
    J. F. Scinocca and N. A. McFarlane, “The parameterization of drag induced by stratified flow over anisotropic orography,” Q. J. R. Meteorol. Soc. 126, 2353–2393 (2000).CrossRefGoogle Scholar
  22. 22.
    W. C. Skamarock, J. B. Klemp, J. Dudhia, et al., A Description of the Advanced Research WRF Version 3, NCAR Tech. Note NCAR/TN-475+STR (NCAR, 2008).Google Scholar
  23. 23.
    R. B. Smith, “A measurements of mountain drag,” J. Atmos. Sci. 35, 1644–1654 (1978).CrossRefGoogle Scholar
  24. 24.
    R. B. Smith, “On severe downslope winds,” J. Atmos. Sci. 42, 2597–2603 (1985).CrossRefGoogle Scholar
  25. 25.
    R. B. Smith, “Hydrostatic airflow over mountains,” Adv. Geophys. 31, 2–41 (1989).Google Scholar
  26. 26.
    R. B. Smith and J. Sun, “Generalized hydraulic solutions pertaining to severe downslope wind,” J. Atmos. Sci. 44, 2834–2939 (1987).Google Scholar
  27. 27.
    G. Spreen, L. Kaleschke, and G. Heygster, “Sea ice remote sensing using AMSR-E 89-GHz channels,” J. Geophys. Res. 113, C02S03 (2008).CrossRefGoogle Scholar
  28. 28.
    S. B. Vosper, “Inversion effects on mountain lee waves,” Q. J. R. Meteorol. Soc. 130, 1723–1748 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Marine Hydrophysical Institute, Russian Academy of SciencesSevastopolRussia

Personalised recommendations