Skip to main content
Log in

Atmospheric Internal Gravity Waves Caused by Tsunamis over Kuril Islands

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

MODIS (Aqua and Terra) space images of the northwest part of the Pacific Ocean at instants of considerable tsunamis in 2009–2011 have been analyzed. Periodic cloud structures typical for internal gravity waves (IGWs) in the atmosphere have been revealed in the region of the Kuril Islands in five cases. It has been shown that the meteorological conditions observed during those events favored the appearance of such phenomena. The continuous oceanic upwelling in the region of the Kuril–Kamchatka Trench is a favorable factor for IGW generation due to the creation of temperature contrasts observed both in warm and cold seasons between the ground layer of the atmosphere and ocean surface. The estimate of the structure of cloud manifestations of atmospheric waves by satellite images testifies also to the influence of the Kuril Ridge orography on their appearance and propagation over the water area under study. The increase in amplitudes and duration of oscillations caused by the tsunami in the shelf zone can be an auxiliary factor for the IGW generation over coastal territories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Hines, “Gravity waves in the atmosphere,” Nature 239, 73–78 (1972).

    Article  Google Scholar 

  2. K. Najita, P. Weaver, and P. Yuen, “A tsunami warning system using an ionospheric technique,” Proc. IEEE 62 (5), 563–577 (1974).

    Article  Google Scholar 

  3. W. R. Peltier and C. O. Hines, “On the possible detection of tsunamis by a monitoring of the ionosphere,” J. Geophys. Res. 81 (12), 1995–2000 (1976).

    Article  Google Scholar 

  4. J. Artru, V. Ducic, H. Kanamori, P. Lognonne, and M. Murakami, “Ionospheric detection of gravity waves induced by tsunamis,” Geophys. J. Int. 160, 840–848 (2005).

    Article  Google Scholar 

  5. J. Y. Liu, Y. B. Tsai, K.-F. Ma, Y.-I. Chen, H.-F. Tsai, C.-H. Lin, M. Kamogawa, and C.-P. Lee, “Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami,” J. Geophys. Res. 111, 1029 (2006).

    Article  Google Scholar 

  6. G. Occhipinti, P. Lognonné, E. A. Kherani, and H. Hébert, “Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami,” Geophys. Res. Lett. 33, L20104 (2006). doi 10.1029/2006GL026865

    Article  Google Scholar 

  7. A. Rozhnoi, S. Shalimov, M. Solovieva, B. W. Levin, M. Hayakawa, and S. N. Walker, “Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals,” J. Geophys. Res.: Space Phys. 117, A09313 (2012). doi 10.1029/2012JA017761

    Article  Google Scholar 

  8. A. Rozhnoi, S. Shalimov, M. Solovieva, B. Levin, G. Shevchenko, M. Hayakawa, Y. Hobara, S. N. Walker, and V. Fedun, “Detection of tsunami-driven phase and amplitude perturbations of subionospheric VLF signals following the 2010 Chile earthquake,” J. Geophys. Res.: Space Phys. 119, 5012–5019 (2014).

    Article  Google Scholar 

  9. G. Occhipinti, A. Kherani, and P. Lognonné, “Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves,” Geophys. J. Int. 173, 753–765 (2008).

    Article  Google Scholar 

  10. M. P. Hickey, G. Schubert, and R. L. Walterscheid, “Atmospheric airglow fluctuations due to a tsunamidriven gravity wave disturbance,” J. Geophys. Res.: Space Phys. 115, A06308 (2010). doi 10.1029/2009JA014977

    Article  Google Scholar 

  11. O. A. Gordin, “Air–sea interaction and feasibility of tsunami detection in the open ocean,” J. Geophys. Res. 109, C05002 (2004). doi 10.1029/2003JC002030

    Google Scholar 

  12. E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

    Google Scholar 

  13. G. Shevchenko, A. Chernov, P. Kovalev, D. Kovalev, O. Likhacheva, A. Loskutov, and A. Shishkin, “The tsunamis of January 3, 2009 in Indonesia and of January 15, 2009 in Simushir as recorded in the South Kuril Islands,” Sci. Tsunami Hazards 30 (1), 43–61 (2011).

    Google Scholar 

  14. V. G. Astafurov and A. V. Skorokhodov, “Identification of atmospheric gravity waves in clouds over a water surface from MODIS imagery,” Atmos. Oceanic Opt. 30 (1), 44–49 (2017).

    Article  Google Scholar 

  15. G. V. Shevchenko, T. N. Ivelskaya, and A. V. Loskutov, “Instrumental measurements of 2009–2011 tsunamis on the Russian Pacific coast,” Izv., Atmos. Ocean. Phys. 50 (5), 459–473 (2014).

    Article  Google Scholar 

  16. G. Shevchenko, T. Ivelskaya, A. Loskutov, and A. Shishkin, “The 2009 Samoan and 2010 Chilean tsunamis recorded on the Pacific coast of Russia,” Pure Appl. Geophys. 170, 1511–1527 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Skorokhodov.

Additional information

Original Russian Text © A.V. Skorokhodov, G.V. Shevchenko, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 4, pp. 428–436.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodov, A.V., Shevchenko, G.V. Atmospheric Internal Gravity Waves Caused by Tsunamis over Kuril Islands. Izv. Atmos. Ocean. Phys. 54, 364–371 (2018). https://doi.org/10.1134/S0001433818040308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818040308

Keywords

Navigation