Skip to main content
Log in

Study of the Neutral Ekman Flow Using an Algebraic Reynolds Stress Model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A recently developed fully explicit algebraic model of Reynolds stress and turbulent heat flux in a thermally stratified planetary atmospheric boundary layer without stratification has been used for a numerical study of the Ekman turbulent boundary layer over a homogeneous rough surface for different dimensionless surface Rossby numbers. A comparative analysis has been conducted for a closure model of the transport term in the prognostic equation of turbulent kinetic energy dissipation including third-order moments. Dependences of the total wind rotation angle on the Rossby number have been obtained. The calculated vertical profiles of mean velocity, turbulent stress, turbulent kinetic energy, surface-friction velocity, and boundary-layer height agree satisfactorily with observational and earlier obtained LES data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. M. Holtslag, G. Svensson, P. Baas, S. Basu, B. Beare, A. C. M. Beljaars, F. C. Bosveld, J. Cuxart, J. Lindvall, G. J. Steeneveld, M. Tjernström, and B. J. H. Van deWiel, “Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models,” Bull. Am. Meteorol. Soc. 94 (11), 1691–1706 (2013).

    Article  Google Scholar 

  2. G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Rev. Geophys. Space Phys. 20 (4), 851–875 (1982).

    Article  Google Scholar 

  3. Y. Cheng, V. M. Canuto, and A. M. Howard, “An improved model for the turbulent PBL,” J. Atmos. Sci. 59 (5), 1550–1565 (2002).

    Article  Google Scholar 

  4. A. F. Kurbatskii and L. I. Kurbatskaya, “Three-parameter model of turbulence for the atmospheric boundary layer over an urbanized surface,” Izv., Atmos. Ocean. Phys. 42 (4), 439–455 (2006).

    Article  Google Scholar 

  5. A. F. Kurbatskii and L. I. Kurbatskaya, “E − ε − θ2 turbulence closure model for an atmospheric boundary layer including the urban canopy,” Meteorol. Atmos. Phys. 104 (1–2), 63–81 (2009).

    Article  Google Scholar 

  6. Tennekes, H. and Lumley, J.L., A First Course in Turbulence (MIT, Cambridge, 1972).

    Google Scholar 

  7. J. Lumley, “Fundamental aspects of incompressible and compressible turbulent flows,” in Simulation and Modelling of Turbulent Flows, Ed. by T. B. Gatski, M. Y. Hussaini, and J. L. Lumley (Oxford University Press, New York, 1996), pp. 5–78.

    Google Scholar 

  8. J. L. Lumley, “Computational modeling of turbulent flows,” in Advances in Applied Mechanics, Ed. by C. S. Yih (Academic, New York, 1978), Vol. 18, pp. 123–176.

    Article  Google Scholar 

  9. A. Andren, “A TKE-dissipation model for the atmospheric boundary layer,” Boundary Layer Meteorol. 56 (3), 207–221 (1991).

    Article  Google Scholar 

  10. J. C. Wyngaard, O. R. Coté, and K. S. Rao, “Modeling the atmospheric boundary layer,” Adv. Geophys. 18A, 193–211 (1975).

    Article  Google Scholar 

  11. D. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng. 3 (2), 269–289 (1974).

    Article  Google Scholar 

  12. W. M. J. Lazeroms, G. Svensson, E. Bazile, G. Brethouwer, S. Wallin, A. V. Johansson, “Study of transitions in the atmospheric boundary layer using explicit algebraic turbulence models,” Boundary-Layer Meteorol. 161 (1), 19–47 (2016).

    Article  Google Scholar 

  13. P. G. Duynkerke, “Application of the turbulence closure model to the neutral and stable atmospheric boundary layer,” J. Atmos. Sci. 45 (5), 865–880 (1988).

    Article  Google Scholar 

  14. P. J. Mason and D. J. Thomson, “Large-eddy simulation of the neutral-static-stability planetary boundary layer,” Q. J. R. Meteorol. Soc. 113, 413–443 (1987).

    Article  Google Scholar 

  15. S. S. Zilitinkevich, “Velocity profiles, resistance laws and dissipation rate of mean flow kinetic energy in a neutrally and stably stratified planetary boundary layer,” Boundary-Layer Meteorol. 46 (4), 367–387 (1989).

    Article  Google Scholar 

  16. A. K. Blackadar and H. Tennekes, “Asymptotic similarity in neutral barotropic planetary boundary layers,” J. Atmos. Sci. 25 (6), 1015–1020 (1968).

    Article  Google Scholar 

  17. S. S. Zilitinkevich, The Dynamics of the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  18. J. Lumley and H. Panofsky, The Structure of Atmospheric Turbulence (Interscience Publishers, New York, 1964; Mir, Moscow, 1966).

    Google Scholar 

  19. P. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, N.M., 1972; Mir, Moscow, 1980).

    Google Scholar 

  20. M. V. Shokurov, S. Yu. Artamonov, and I. N. Ezau, “Numerical modeling of a neutrally stratified atmospheric boundary layer,” Morsk. Gidrofiz. Zh., No. 2, 37–50 (2013).

    Google Scholar 

  21. A. K. Blackadar, “The vertical distribution of wind and turbulent exchange in a neutral atmosphere,” J. Geophys. Res. 67 (8), 3095–3102 (1962).

    Article  Google Scholar 

  22. S. Nicholls, “Aircraft observations of the Ekman layer during the joint air–sea interaction experiment,” Q. J. R. Meteorol. Soc. 111, 391–426 (1985).

    Article  Google Scholar 

  23. J. Q. Hinze, Turbulence (McGraw-Hill, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Kurbatskii.

Additional information

Original Russian Text © A.F. Kurbatskii, L.I. Kurbatskaya, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 4, pp. 396–404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatskii, A.F., Kurbatskaya, L.I. Study of the Neutral Ekman Flow Using an Algebraic Reynolds Stress Model. Izv. Atmos. Ocean. Phys. 54, 336–343 (2018). https://doi.org/10.1134/S0001433818040266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818040266

Keywords

Navigation