Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 894–903 | Cite as

Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data

  • K. N. Visheratin
  • A. F. Nerushev
  • M. D. Orozaliev
  • Xiangdong Zheng
  • Shumen Sun
  • Li Liu
Stydying Atmosphere and Oceans from Space


This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980–2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009–2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980–2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5–7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.


total ozone content temporal variability ground-based and satellite measurements Asian Region spectral cross-wavelet and composite analyses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atmosfera: Spravochnik (The Atmosphere: A Handbook), Leningrad: Gidrometeoizdat, 1991.Google Scholar
  2. Bai, K., Liu, Ch., Shi, R., Zhang, Y., and Gao, W., Global validation of FY-3A total ozone unit (TOU) total ozone columns using ground-based Brewer and Dobson measurements, Int. J. Remote Sens., 2013, vol. 34, no. 14, pp. 5228–5242.CrossRefGoogle Scholar
  3. Baluev, R.V., Assessing statistical significance of periodogram peaks, Mon. Not. R. Astron. Soc., 2008, vol. 385, no. 3, pp. 1279–1285.CrossRefGoogle Scholar
  4. Bian, J.C., Yan, R.C., Chen, H.B., Lu, D., and Massie, S.T., Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations, Adv. Atmos. Sci., 2011, vol. 28, no. 6, pp. 1318–1325. doi 10.1007/s00376-011-0174-9CrossRefGoogle Scholar
  5. Bohme, W., A change of circulation pattern in middle latitudes in connection with the 26-month cycle, in Trudy Mezhdunarodnogo Simposiuma “Dinamika krupnomasshtabnykh atmofernykh protsessov” (Proceedings of the International Symposium “Dynamics of Large-Scale Atmospheric Processes”), Moscow: Nauka, 1965, pp. 402–409.Google Scholar
  6. Chehade, W., Weber, M., and Burrows, J.P., Total ozone trends and variability during 1979–2012 from merged datasets of various satellites, Atmos. Chem. Phys., 2014, vol. 14, no. 13, pp. 7059–7074. doi 10.5194/acp-14-7059-2014CrossRefGoogle Scholar
  7. Echer, E., Multi-resolution analysis of global total ozone column, Ann. Geophys., 2004, vol. 22, pp. 1487–1493.CrossRefGoogle Scholar
  8. Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S.K., and Woods, T.N., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 2013, vol. 13, pp. 3945–3977. doi 10.5194/acp-13-3945-2013CrossRefGoogle Scholar
  9. Fioletov, V.E., Labow, G.J., Evans, R., Hare, E.W., Kohler, U., McElroy, C.T., Miyagawa, K., Redondas, A., Savastiouk, V., Shalamyansky, A.M., Staehelin, J., Vanicek, K., and Weber, M., Performance of the ground-based total ozone network assessed using satellite data, J. Geophys. Res., 2008, vol. 113, D14313. doi 10.1029/2007JD009809CrossRefGoogle Scholar
  10. Gray, L.J. and Pyle, J.A., A two-dimensional model of the quasi-biennial oscillation of ozone, J. Atmos. Sci., 1989, vol. 46, pp. 203–220.CrossRefGoogle Scholar
  11. Grinsted, A., Moore, J.C., and Jevrejeva, S., Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes Geophys., 2004, no. 11, pp. 561–566. doi 10.5194/npg-11-561-2004CrossRefGoogle Scholar
  12. Izrael, Yu.A., Belokrinitskaya, L.M., Dvoretskaya, I.V., Dorokhov, V.M., Ivanov, K.A., Kruchenitskii, G.M., Shepelev, D.V., and Yusipov, T.A., Comparison of ground-based and satellite measurements of total ozone, Russ. Meteorol. Hydrol., 2014, vol. 39, no. 6, pp. 420–430.CrossRefGoogle Scholar
  13. Kiefer, R., Schad, A., Herzberg, W., and Roth, M., Determination of fundamental asteroseismic parameters using the Hilbert transform, Astron. Astrophys., 2015, vol. 578, no. A56. doi 10.1051/0004-6361/201425474Google Scholar
  14. Labow, G.J., McPeters, R.D., Bhartia, P.K., and Kramarova, N., A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network, J. Geophys. Res. Atmos., 2013, vol. 118, pp. 7370–7378.CrossRefGoogle Scholar
  15. Murple, S.L., Jr., Digital Spectral Analysis with Applications, Upper Saddle River, New Jersey, Prentice-Hall, 1986; Moscow: Mir, 1990.Google Scholar
  16. McPeters, R.D., Bhartia, P.K., Haffner, D., Labow, G.J., and Flynn, L., The version 8.6 SBUV ozone data record: An overview, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 8032–8039.Google Scholar
  17. Nerushev, A.F., Vozdeistvie intensivnykh atmosfernykh vikhrei na ozonovyi sloi Zemli (Influence of Intense Atmospheric Vortices on the Earth’s Ozone Layer), St. Petersburg: Gidrometeoizdat, 2003.Google Scholar
  18. Scargle, J.D., Studies in astronomical time series analysis. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 1982, vol. 263, pp. 835–853.CrossRefGoogle Scholar
  19. Semenov, V.K., Spektorov, L.A., and Timofeeva, S.S., Variations in the ozone total content in region of Lake Issyk-Kul’, in Atmosfernyi ozon (Atmospheric Ozone), Moscow: Nauka, 1983, pp. 85–88.Google Scholar
  20. SIDC-team, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Monthly Report on the International Sunspot Number, 2013. http://www.sidc. be/sunspot-data.Google Scholar
  21. Timofeev, Yu.M., Global’naya sistema monitoringa parametrov atmosfery i poverkhnosti (Global System of Monitoring of Atmospheric and Surface Parameters), St. Petersburg, 2010.Google Scholar
  22. Torrence, C. and Compo, G.P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 1998, vol. 79, pp. 61–78.CrossRefGoogle Scholar
  23. Tung, K.K. and Yang, H., Global QBO in circulation and ozone. Pt. 1: Reexamination of observational evidence, J. Atmos. Sci., 1994, vol. 51, no. 19, pp. 2699–2707.CrossRefGoogle Scholar
  24. Visheratin, K.N. and Karmanov, F.I., Practical Methods of Estimation of Spectral Parameters. Obninsk, 2008. Scholar
  25. Visheratin, K.N., Kamenogradskii, N.E., Kashin, F.V., Semenov, V.K., Sinyakov, V.P., and Sorokina, L.I., Spectral–temporal structure of variations in the atmospheric total ozone in central Eurasia, Izv., Atmos. Ocean. Phys., 2006, vol. 42, no. 2, pp. 184–202.CrossRefGoogle Scholar
  26. Visheratin, K.N., Relationship between phases of quasidecadal oscillations of total ozone and the 11-year solar cycle, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 1, pp. 94–102.CrossRefGoogle Scholar
  27. Visheratin, K.N. and Kuznetsov, V.I., Spatial and temporal variations in the phase of major oscillations in the total ozone content according to TOMS-SBUV satellite measurement data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 192–199.Google Scholar
  28. Visheratin, K.N., Quasidecadal variations of global average and zonal mean values of total ozone and some parameters of the lower stratosphere, in Proc. Int. Symp. “Atmospheric Radiation and Dynamics” (ISARD-2015), St. Petersburg, 2015, p. 290.Google Scholar
  29. Wang W., Zhang X., An X., Zhang Y.,Huang F., Wang Y., Zhang Z., Lu J., Analysis for retrieval and validation results of FY-3 Total Ozone Unit (TOU), Chin. Sci. Bull, 2010, vol. 55, pp. 3037–3043.CrossRefGoogle Scholar
  30. Wang, W., Flynn, L., Zhang, X., Wang, Y., Jiang, A., Zhang, Y., Huang, F., Li, X., Liu, R., Zheng, Z., Yu, W., and Liuet, G., Cross-calibration of the total ozone unit (TOU) with the ozone monitoring instrument (OMI) and SBUV/2 for environmental applications, IEEE Trans. Geosci. Remote Sens., 2012, vol. 50, no. 12, pp. 4043–4045.Google Scholar
  31. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project, 2014, Rep. no. 55.Google Scholar
  32. WOUDC (World Ozone and Ultraviolet Radiation Centre), Environment Canada, Toronto 2013.Google Scholar
  33. Zheng, X. and Wei, X., (2010). Long-term total ozone comparisons between space and ground-based observations at sites of China, J. Appl. Meteorol., vol. 21, no. 1, pp. 1–10.Google Scholar
  34. Zhou, X., Luo, Ch., and Li, W., Atmospheric total ozone variation in China and anomalous low-value center of ozone over the Tibetan Plateau, Chin. Sci. Bull, 1995, vol. 40, no. (15), pp. 1396–1398.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. N. Visheratin
    • 1
  • A. F. Nerushev
    • 1
  • M. D. Orozaliev
    • 2
  • Xiangdong Zheng
    • 3
  • Shumen Sun
    • 4
  • Li Liu
    • 4
  1. 1.Research and Production Association TyphoonObninskRussia
  2. 2.Kyrgyz State National UniversityBishkekKyrgyz Republic
  3. 3.Chinese Academy of Meteorological SciencesBeijingChina
  4. 4.Chengdu Institute of Information TechnologyChengduChina

Personalised recommendations