Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 979–990 | Cite as

Differential Radiothermal Methods for Satellite Retrieval of Atmospheric Humidity Profile

  • V. V. Sterlyadkin
  • E. V. Pashinov
  • A. V. Kuzmin
  • E. A. Sharkov
Physical Bases and Methods of Studying the Earth from Space


The existing radiometric methods for measuring the profile of the water-vapor concentration from spacecrafts are analyzed. Questions of the sensitivity of radiometric measurements to a deviation in the water-vapor concentration from the standard profile are considered. It is shown that the traditional measurements near absorption line 183 GHz have a low sensitivity to a change in the water-vapor concentration in the lower troposphere. A new differential method of humidity measurement in the lower troposphere has been proposed based on measurements near the 22-GHz line. The advantages of differential measurements near 22 GHz when compared to similar measurements in the vicinity of 183 GHz are confirmed by the results of computer simulation.


water-vapor concentration in the troposphere radiometric measurements satellite humidity measurements inverse problem remote sensing of the Earth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boldyrev, V.V., Gorobets, N.N., Il’gasov, P.A., et al., Satellite microwave scanner/sounder MTVZA-GYa, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2008, vol. 5, no. 1, pp. 243–248.Google Scholar
  2. Bommarito, J.J., DMSP special sensor microwave imager sounder (SSMIS), Proc. SPIE–Int. Soc. Opt. Eng., 1993, vol. 1935, pp. 230–238.Google Scholar
  3. Clatchey, R.A., Fenn, R.W., Selby, J.E.A., et al., Optical Properties of the Atmosphere, Bedford, Massachusetts: AFCRL, 1972.Google Scholar
  4. Dong, C. and Yang, J., An overview of a new Chinese weather satellite FY-3A, Bull. Am. Meteorol. Soc., 2009, vol. 90, no. 10, pp. 1531–544.CrossRefGoogle Scholar
  5. Ermakov, D.M., Chernushich, A.P., Sharkov, E.A., Pokrovskaya, I.V., Searching for an energy source of the intensification of tropical cyclone Katrina using microwave satellite sensing data, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 9, pp. 963–973.CrossRefGoogle Scholar
  6. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Estimation of tropospheric advective flows of latent heat over the ocean in animation analysis of radiothermal data of satellite monitoring, Issled. Zemli Kosmosa, 2014a, no. 4, pp. 32–38.Google Scholar
  7. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., The role of tropospheric advective flows of latent heat in the intensification of tropical cyclones, Issled. Zemli Kosmosa, 2014b, no. 4, pp. 3–15.Google Scholar
  8. Ermakov, D.M., Sharkov, E.A., Pokrovskaya, I.V., and Chernushich, A.P., Revealing the energy sources of alternating intensity regimes of the evolving Alberto tropical cyclone using microwave satellite sensing data, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 9, pp. 974–985.CrossRefGoogle Scholar
  9. Gangwar, R.K. and Gohil, B.S., Retrieval of layer averaged relative humidity profiles from MHS observations over tropical region, Int. J. Atmos. Sci., 2014, id 645970.Google Scholar
  10. Gohil, B.S. and Mathur, A.K., Atmospheric humidity profile retrieval algorithms for Megha-Tropiques SAPHIR: A simulation study and analysis of AMSU-B data, Proc. SPIE, 2006, vol. 6408, pp. 640803–1–640803–9.CrossRefGoogle Scholar
  11. Mathur, A.K., Gangwar, R.K., Gohil, B.S., et al., Humidity profile retrieval from SAPHIR on-board the Megha-Tropiques, Current Sci., 2013, vol. 104, no. 12, pp. 1650–655.Google Scholar
  12. Rosenkranz, P.W., Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 1998, vol. 33, no. 4, pp. 919–928.CrossRefGoogle Scholar
  13. Saunders, R.W., English, S.J., and Jones, D.C., AMSU-B: A new tool for atmospheric research, Proc. SPIE–Int. Soc. Opt. Eng., 1998, vol. 2313, pp. 98–108.Google Scholar
  14. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Energy features of plural tropical cyclogenesis from multispectral satellite observations, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1084–1091.CrossRefGoogle Scholar
  15. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Increased water-vapor content in the atmosphere of tropical latitudes as a necessary condition for the genesis of tropical cyclones, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 9, pp. 900–908.CrossRefGoogle Scholar
  16. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Revealing high-energy domes in the equatorial field of integral water vapor during the evolution of the Francisco tropical cyclone (2001), Issled. Zemli Kosmosa, 2013, no. 5, pp. 3–11.Google Scholar
  17. Sharkov, E.A., Polar transfer of latent heat by mesoscale tropospheric systems: Animation analysis of microwave satellite data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2015, vol. 12, no. 5, pp. 170–187.Google Scholar
  18. Sivira, R.G., Brogniez, H., Mallet, C., and Oussar, Y., A layer-averaged relative humidity profile retrieval for microwave observations: design and results for the Megha-Tropiques payload, Atmos. Meas. Tech., 2015, no. 8, pp. 1055–1071.CrossRefGoogle Scholar
  19. Sterlyadkin, V.V. and Kosov, A.S., Determination of the vertical profile of water vapor in the atmosphere up to 80 km from radio surveying of the satellite–Earth route, Issled. Zemli Kosmosa, 2014, no. 3, pp. 14–24.Google Scholar
  20. Sterlyadkin, V.V. and Sharkov, E.A., Differential radiothermal methods for determining the vertical profile of water vapor in the Earth’s troposphere and stratosphere, Issled. Zemli Kosmosa, 2014, no. 5, pp. 15–28.Google Scholar
  21. Stevens, B. and Bony, S., Water in the atmosphere, Phys. Today, 2013, vol. 66, no. 6, pp. 29–34.CrossRefGoogle Scholar
  22. Tretyakov, M.Yu., Krupnov, A.F., Koshelev, M.A., Makarov, D.S., Serov, E.A., and Parshin, V.V., Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range, Rev. Sci. Instrum., 2009, vol. 80, no. 9, pp. 93–106.CrossRefGoogle Scholar
  23. Weng, F. and Zou, X., Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications, J. Geophys. Res., 2012, no. 117, pp. 2156–2202.Google Scholar
  24. Westwater, E.R. and Schroeder, J.A., Guide to microwave weighting function calculations, NOAA Tech. Memo. ERL WPL-225, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Sterlyadkin
    • 1
    • 2
  • E. V. Pashinov
    • 1
  • A. V. Kuzmin
    • 1
  • E. A. Sharkov
    • 1
  1. 1.Space Research InstituteMoscowRussia
  2. 2.Moscow State Institute of Radio EngineeringMoscowRussia

Personalised recommendations