Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 1142–1154 | Cite as

Basic Geometric Support of Systems for Earth Observation from Geostationary and Highly Elliptical Orbits

  • Yu. M. Gektin
  • N. A. Egoshkin
  • V. V. Eremeev
  • A. E. Kuznecov
  • I. V. Moskatinyev
  • M. B. Smelyanskiy
Methods and Means of Processing and Interpretation of Space Information

Abstract

A set of standardized models and algorithms for geometric normalization and georeferencing images from geostationary and highly elliptical Earth observation systems is considered. The algorithms can process information from modern scanning multispectral sensors with two-coordinate scanning and represent normalized images in optimal projection. Problems of the high-precision ground calibration of the imaging equipment using reference objects, as well as issues of the flight calibration and refinement of geometric models using the absolute and relative reference points, are considered. Practical testing of the models, algorithms, and technologies is performed in the calibration of sensors for spacecrafts of the Electro-L series and during the simulation of the Arktika prospective system.

Keywords

geometric model calibration georeferencing geometric normalization geostationary highly elliptical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreev, R.V., Akimov, N.P., Badaev, K.V., Gektin, Yu.M., Zaitsev, A.A., Ryzhakov, A.V., Smelyanskii, M.B., Sulimanov, N.A., and Frolov, A.G., Multizonal scanning instrument for the Elektro-L geostationary meteorological satellite, Raketno-Kosm. Priborostr. Inf. Sist., 2015, no. 3, pp. 19–24.Google Scholar
  2. Avtomaticheskie kosmicheskie apparaty dlya fundamental’nykh i prikladnykh nauchnykh issledovanii (Automatic Space Vehicles for Basic and Applied Research), Polishchuk, G.M. and Pichkhadze, K.M., Eds., Moscow: PRINT, 2010.Google Scholar
  3. Egoshkin, N.A., Eremeev, V.V., and Moskvitin, A.E., Coordinate binding of geostationary satellite images by contour pints of the Earth’s disk, Vestn. RGRTU, 2007, no. 22, pp. 10–17.Google Scholar
  4. Egoshkin, N.A., Eremeev, V.V., and Kozlov, E.P., Normalization of space images of the Earth by their comparison with electronic maps, Tsifrovaya Obrab. Signalov, 2009a, no. 3, pp. 21–26.Google Scholar
  5. Egoshkin, N.A., Eremeev, V.V., Kozlov, E.P., Moskatin’ev, I.V., and Moskvitin, A.E., Geodetic binding of images from the geostationary satellite on the contour of the Earth’s disk and electronic maps, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2009b, vol. 6, no. 1, pp. 132–138.Google Scholar
  6. Egoshkin, N.A. and Moskvitin, A.E., Increasing the image correction accuracy by filtering of measured angular position of the scanning mirror, Vestn. RGRTU, 2010, no. 3, pp. 7–12.Google Scholar
  7. Egoshkin, N.A., Eremeev, V.V., and Moskvitin, A.E., Integration of photoreceiver images under conditions of geometric distortions, Tsifrovaya Obrab. Signalov, 2012, no. 3, pp. 40–44.Google Scholar
  8. Egoshkin, N.A. and Eremeev, V.V., Increasing satellite imagery resolution by fusion of data from multiple spatially shifted CCDs: A spectral-based approach, Remote Sens. Lett., 2015, vol. 6, no. 2, pp. 116–124.CrossRefGoogle Scholar
  9. Feuer, A., On the necessity of Papoulis’ result for multidimensional GSE, IEEE Signal Proc. Lett., 2004, vol. 11, no. 4, pp. 420–422.CrossRefGoogle Scholar
  10. Gektin, Yu.M., Eremeev, V.V., Kuznetsov, A.E., and Smelyanskii, M.B., Design of mathematical software support for ground-based calibration of surveying instruments, in Tr. nauch.-tekhn. konf. “Aktual’nye problemy raketno-kosmicheskogo priborostroeniya i informatsionnykh tekhnologii” (Proceedings of the Scientific and Technical Conference “Important Problems of Aerospace Instrumentation and Information Technology”), Moscow: RNIIKP, 2007, pp. 248–255.Google Scholar
  11. Gektin, Yu.M., Eremeev, V.V., Egoshkin, N.A., Zenin, V.A., and Moskatin’ev, I.V., Normalization of images from geostationary space system of the Earth observation, Tsifrovaya Obrab. Signalov, 2011, no. 3, pp. 28–31.Google Scholar
  12. Gektin, Yu.M. and Selivanov, A.S., Multizonal scanning instrument for the Elektro-L no. 1 geostationary meteorological satellite, Vestn. NPO im. S.A. Lavochkina, 2015, no. 3, pp. 114–117.Google Scholar
  13. GOES-N Databook, NASA Report, 2005. http://goes. gsfc.nasa.gov/text/goes.databooknop.html.Google Scholar
  14. Kosmicheskie informatsionnye sistemy i pribory opticheskogo diapazona dlya distantsionnogo zondirovaniya Zemli (Space information systems and optical range instruments for remote sensing of the Earth), Urlichicha Yu. M., Ed., M.: ID Media Pablisher, 2012.Google Scholar
  15. Novikov, M.V., Gektin, Yu.M., Akimov, N.P., Sulimanov, N.A., and Smelyanskii, M.B., Multizonal scanning instrument for remote acquisition of the Earth’s image from geostationary orbits, RF Patent no. 2319183, MPK G02B 26/10, Byull. no. 7, March 10, 2008.Google Scholar
  16. Poreev, V.N., Komp’yuternaya grafika (Computer Graphics), St. Petersburg: BKhV-Peterburg, 2002.Google Scholar
  17. Sovremennye tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli (Current Technologies for Processing of the Earth’s Remote Sensing Data), Eremeev, V.V., Ed., Moscow: Fizmatlit, 2015.Google Scholar
  18. Wolf, R. and Just, D., LRIT/HRIT Global Specification, Darmstadt, Germany: Coordination Group for Meteorological Satellites, EUMETSAT, 1999.Google Scholar
  19. Zharov, V.E., Sfericheskaya astronomiya (Spherical Astronomy), Moscow: Vek, 2006.Google Scholar
  20. Zlobin, V.K. and Eremeev, V.V., Obrabotka aerokosmicheskikh izobrazhenii (Aerospace Imagery Processing), Moscow: Fizmatlit, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. M. Gektin
    • 1
  • N. A. Egoshkin
    • 2
  • V. V. Eremeev
    • 2
  • A. E. Kuznecov
    • 2
  • I. V. Moskatinyev
    • 3
  • M. B. Smelyanskiy
    • 1
  1. 1.OAO Russian Space SystemsMoscowRussia
  2. 2.Ryazan State Radio Engineering UniversityRyazanRussia
  3. 3.Lavochkin Research and Production AssociationKhimki, Moscow oblastRussia

Personalised recommendations