Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 1205–1215 | Cite as

Condor-E Spacecraft with a Synthetic Aperture Antenna and Its Capabilities

  • M. I. Babokin
  • A. V. Efimov
  • S. E. Zaytsev
  • O. A. Karpov
  • G. V. Savosin
  • M. P. Titov
  • E. F. Tolstov
  • V. E. Turuk
  • O. E. Tsvetkov
Space Systems, Remote Sensing Equipment, and Programs
  • 12 Downloads

Abstract

The main parameters of a small spacecraft (SSC) (Condor-E) and its onboard radar with a synthetic aperture antenna (SAR) are presented in the paper. Two such SSCs were launched in Russia into a 500-km orbit in June 2013 and in December 2014. The structure of the radar with synthetic aperture antenna and the basic parameters of three standard imaging modes: detailed Spotlight (DSL), detailed Stripmap (DSM), and Scan-SAR are also presented. All three modes are accompanied by radar images generated during flight tests. In this paper it is examined whether it is possible to introduce new modes (an interferometric assessment of terrain relief in the case of an “oblique” survey and the selection of moving targets) and the relevant pictures are provided. Condor-E SAR and TerraSAR are compared as typical space radars in their design and experimental modes. We conclude that the SARs perform similarly and give hope for the further augmentation of both SAR capabilities, including new modes without serious hardware modifications.

Keywords

small spacecraft synthetic aperture radar basic performance high resolution Condor-E interferometric survey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanas’ev, I., The sharp-sighted “Kondor”, Nov. Kosmonavt, 2013, no. 8.Google Scholar
  2. Afanas’ev, I., The flight of the second “Kondor”, Nov. Kosmonavt, 2015, no. 2.Google Scholar
  3. Aviatsionnye sistemy radiovideniya (Airborne Radiowave Imaging Systems), Kondratenkov, G.S, Ed., Moscow: Radiotekhnika, 2015.Google Scholar
  4. Babokin, M.I. and Tsvetkov, O.E., Algorithms of interferometric processing of SAR signals in the identification of moving targets, Radiotekhnika, 2012, no. 10.Google Scholar
  5. Babokin, M.I., Efimov, A.V., Karpov, O.A., and Titov, M.P., Single-pass stripmap interferometer, Radiotekhnika, 2014, no. 7.Google Scholar
  6. Breit, H., Fischer, M., Balss, U., and Fritz, T., TerraSAR-X Staring Spotlight processing and products, Proceedings of EUSAR-2014.Google Scholar
  7. Denisov, V.P., Zaitsev, S.E., Kostyuk, E.A., Tolstov, E.F., and Tsvetkov, O.E., Decoding of radar images in radio vision, Radiotekhnika, 2014, no. 7.Google Scholar
  8. Frost, V., Probability of error and radiometric resolution for target discrimination in radar images, IEEE Trans. Geosci. Remote Sens., 1984, vol. GE-22, no. 2, pp. 121–125.CrossRefGoogle Scholar
  9. Ge, D., Jinsong, C., and Minhui, Z., Research on some problems about SAR radiometric resolution, Proceedings of EUSAR-2004.Google Scholar
  10. Karpov, O.A., Lukanidin, A. M., Nechaev, V. M., Ovchinnikov, A. A., Orlov, M. S., Tolstov, E. F., and Yakovlev, A. M., Experimental testing of algorithms of interperiod filling of SAR spectra, in Tsifrovaya obrabotka signalov v RSA (Digital Processing of SAR Spectra), Tolstov, E.F., Ed., Smolensk: VA, VPVO VS RF, 2005.Google Scholar
  11. Karpov, O.A. and Tolstov, E.F., Earth’s surface coverage in airborne and spaceborne SAR, Radiotekhnika, 2009, no. 3.Google Scholar
  12. Kondratenkov, G.S. and Frolov, A.Yu., Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli. Uch. pos. dlya vuzov (Radiowave Imaging. Radar Systems for Remote Sensing of the Earth. A Textbook for Higher Education Institutions), Kondratenkov, G.S., Ed., Moscow: Radiotekhnika, 2005.Google Scholar
  13. Moreira, A., German Spaceborne Radar Program: TerraSAR-X, TanDEM-X and Beyond, First German/Japanese Science and Application Workshop for Next Generation SAR, Sola City, Tokyo, 2013.Google Scholar
  14. Neronskii, L.B., Prospects of the development of methods and systems for spaceborne radar observations, Radioelektronika, 2011, no. 11.Google Scholar
  15. Neronskii, L.B., Mikhailov, V.F., and Bragin, I.V., Mikrovolnovaya apparatura distantsionnogo zondirovaniya Zemli i atmosfery. Radiolokatory s sintezirovannoi aperturoi antenny: Uchebnoe posobie (Microwave Instrumentation for Remote Sensing of the Earth and Atmosphere: A Textbook), St. Petersburg: SPbGUAP, 1999, vol. 2.Google Scholar
  16. Osipov, I.G., Neronskiy, L.B., Turuk, V.E., Andrianov, V.I., Verba, V.S., Korolev, A.V., Kulikovsky, M.G., Pushkov, D.V., Janushevsky, G.D., Feyzulla, N.M., and Panteleev, V.A., Synthetic aperture radar for Earth and sea surface observations, Proceedings of EUSAR-2004, Ulm, 2004, vol. 1, pp. 59–62.Google Scholar
  17. Osipov, I.G., Neronskiy, L.B., Andrianov, V.I., Verba, V.S., Kozlov, K.V., Kurenkov, V.N., and Pushkov, D.V., Calculated performance of SAR for high orbit spacecraft using nuclear power supply, Proceedings of EUSAR-2006, Dresden, 2006.Google Scholar
  18. Radiolokatsionnye sistemy vozdushnoi razvedki. Deshifrirovanie radiolokatsionnykh izobrazhenii (Radar Airborne Surveillance Systems. Decoding of Radar Images), Shkol’nii, L.A., Ed., Moscow: VVIA im. N.E. Zhukovskogo, 2008.Google Scholar
  19. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya (Airborne Radar Systems of Earth Coverage), Verba, V.S., Ed., Moscow: Radiotekhnika, 2010.Google Scholar
  20. Ulaby, F.W., Moore, R.K., and Fung, A.K., Microwave Remote Sensing: Active and Passive, vol. 2: Radar Remote Sensing and Surface Scattering and Emission, Reading, MA: Addison Wesley, 1982.Google Scholar
  21. Ulaby, F.W., Kouyate, F., Brisco, B., and Williams, T.H.L., Textural information in SAR images, IEEE Trans. Geosci. Remote Sens., 1986, vol. GE-24, no. 2, pp. 235–245.CrossRefGoogle Scholar
  22. Yongtan, L., Radar Imaging Technology, Beijing: Sciences, 1999.Google Scholar
  23. Zakharov, V.D., Tolstov, E.F., and Chetverik, V.N., Estimation of radiometric characteristics of SAR by the signal module using the differential radiocontrast method, Radiopromyshlennost’, 2011, no. 4, pp. 110–121.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. I. Babokin
    • 1
  • A. V. Efimov
    • 1
  • S. E. Zaytsev
    • 2
  • O. A. Karpov
    • 1
  • G. V. Savosin
    • 2
  • M. P. Titov
    • 1
  • E. F. Tolstov
    • 1
  • V. E. Turuk
    • 3
  • O. E. Tsvetkov
    • 1
  1. 1.ZAO AerokonZhukovsky, Moscow oblastRussia
  2. 2.AO VPK NPO MashinostroyeniaReutov, Moscow oblastRussia
  3. 3.AO Vega Radio Engineering CorporationMoscowRussia

Personalised recommendations