Involvement of Melatonin in Changing Depression-Like and Aggressive Behaviour in Rats Under Moderate Electromagnetic Shielding

Abstract

It was found that moderate electromagnetic shielding, which attenuates constant and variable components of the geomagnetic field (19 h per day for 10 days), induces in male rats the development of depression-like behavior. This behavior is diagnosed on the basis of increased passive swimming time and a decreased duration of active swimming in the Porsolt test. These behaviors reach their peak on days 3–4 of the experiment. The daily administration of 1 mg/kg exogenous melatonin reduces these depression-like behaviors as soon as day 1 of the experiment, and this effect persists throughout all stages of the experiment. Electromagnetic shielding and the administration of 1 mg/kg exogenous melatonin do not change the levels of intraspecies aggressiveness. An increase in melatonin dosage to 5 mg/kg even further reduces depression-like symptoms and stops the increase in intraspecies aggressiveness during the experiment. The conclusion is made that melatonin plays an important role in the mechanisms of physiological effects of a weakened electromagnetic geomagnetic field.

This is a preview of subscription content, access via your institution.

References

  1. Abu-Khadda, R.Kh., Reactions of mast cells to the action of weak ELF magnetic fields, Extended Abstract of Cand. Sci. (Biology) Dissertation, 2003.

    Google Scholar 

  2. Anisimov, V.N., Epiphysis, melatonin, and aging, in Khronobiologiya i khronomeditsina: Rukovodstvo (Chronobiology and Chronomedicine: A Handbook) Moscow: Med. inform. agentstvo, 2012, pp. 284–333.

    Google Scholar 

  3. Arushanyan, E.B., Epiphysis and depression, Zh. Nevropatol. Psikhiatr. im. S. S. Korsakova, 1991, vol. 91, no. 6, pp. 108–112.

    Google Scholar 

  4. Bakos, J., Nagy, N., Thuróczy, G., and Szabó, L.D., Sinusoidal 50 Hz, 500 microT magnetic field has no acute effect on urinary 6-sulphatoxymelatonin in Wistar rats, Bioelectromagnetics, 1995, vol. 16, no. 6, pp. 377–380.

    Article  Google Scholar 

  5. Bakos, J., Nagy, N., Thuróczy, G., and Szabó, L.D., Urinary 6-sulphatoxymelatonin excretion is increased in rats after 24 hours of exposure to vertical 50 Hz, 100 microT magnetic field, Bioelectromagnetics, 1997, vol. 18, no. 2, pp. 190–192.

    Article  Google Scholar 

  6. Baler, R., Coon, S., and Klein, D.S., Orphan nuclear receptor Rzr-beta-cyclic-AMP regulates expression in the pineal gland, Biochem. Biophys. Res. Commun., 1996, vol. 220, pp. 975–978.

    Article  Google Scholar 

  7. Beck-Friis, J., Kjellman, B.F., Aperia, B., Unden, F., von Rosen, D., Ljunggren, J.-G., and Wetterberg, L., Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome, Acta Psychiatr. Scand., 1985, vol. 71, no. 4, pp. 319–330.

    Article  Google Scholar 

  8. Belova, N.A., Ermakov, A.M., Znobishcheva, A.V., Srebnitskaya, L.K., and Lednev, V.V., The influence of extremely weak alternating magnetic fields on the regeneration of planarians and the gravitropic response of plants, Biophysics, 2010, vol. 55, no. 4, pp. 623–627.

    Article  Google Scholar 

  9. Binhi, V.N., Nuclear spins in primary mechanisms of the biological action of magnetic fields, Biofizika, 1995, vol. 40, no. 3, pp. 677–691.

    Google Scholar 

  10. Binhi, V.N., Theoretical concepts in magnetobiology, Electro-Magnetobiol., 2001, vol. 20, no. 1, pp. 43–58.

    Article  Google Scholar 

  11. Binhi, V.N., Magnetobiology: Underlying Physical Problems, San Diego: Academic, 2002.

    Google Scholar 

  12. Bliss, V.L. and Heppner, F.H., Circadian activity rhythm influenced by near zero magnetic field, Nature, 1976, vol. 261, no. 5559, pp. 411–412.

    Article  Google Scholar 

  13. Brown, S.L., Steinberg, R.L., and Van Praag, H.M., The pathogenesis of depression: Reconsideration of neurotransmitter data, in Handbook of Depression and Anxiety: A Biological Approach, New York: Marcel Dekker, 1994, pp. 317–347.

    Google Scholar 

  14. Buresh, Ya., Bureshova, O., and Huston, D.P., Paininduced aggression, in Metodiki i osnovnye eksperimenty po izucheniyu mozga i povedeniya (Techniques and Basic Experiments on Brain and Behavioral Studies), Moscow: Vysshaya shkola, 1991, pp. 130–131.

    Google Scholar 

  15. Burch, J.B., Reif, J.S., and Yost, M.G., Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans, Neurosci. Lett., 1999, vol. 266, pp. 209–212.

    Article  Google Scholar 

  16. Burch, J.B., Reif, J.S., Noonan, C.W., and Yost, M.G., Melatonin metabolite levels in workers exposed to 60-Hz magnetic fields: Work in substations and with 3-phase conductors, J. Occup. Environ. Med., 2000, vol. 42, pp. 136–142.

    Article  Google Scholar 

  17. Burch, J.B., Reif, J.S., and Yost, M.G., Geomagnetic activity and human melatonin metabolite excretion, Neurosci. Lett., 2008, vol. 438, pp. 76–79.

    Article  Google Scholar 

  18. Cashmore, A., Jarillo, J., Wu, Y-J., and Liu, D., Cryptochromes: Blue light receptors for plants and animals, Science, 1999, vol. 284, pp. 760–765.

    Article  Google Scholar 

  19. Cherry, N., Schumann resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity, Nat. Hazards, 2002, vol. 26, pp. 279–331.

    Article  Google Scholar 

  20. Chizhevsky, A.L., Zemnoe ekho solnechnykh bur’ (The Terrestrial Echo of Solar Storms), Moscow: Mysl’, 1976.

    Google Scholar 

  21. Close, J., Are stress responses to geomagnetic storms mediated by the cryptochrome compass system?, Proc. Biol. Sci., 2012, vol. 279, no. 1736, pp. 2081–2090.

    Article  Google Scholar 

  22. Close, J., The compass within the clock. Part 1. The hypothesis of magnetic fields as secondary zeitgebers to the circadian system-logical and scientific objections, Hypothesis, 2014, vol. 12, no. 1, e1.

    Google Scholar 

  23. Cremer-Bartels, G., Krause, K., and Kuchle, H.J., Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans, Graefe’s Arch. Clin. Exp. Ophthalmol., 1983, vol. 220, no. 5, pp. 248–252.

    Article  Google Scholar 

  24. Cremer-Bartels, G., Krause, K., Mitoskas, G., and Brodersen, D., Magnetic field of the Earth as additional zeitgeber for endogenous rhythms?, Naturwissenschaften, 1984, vol. 71, no. 11, pp. 567–574.

    Article  Google Scholar 

  25. Devitsin, D.V., Pal’chikova, N.A., Trofimov, A.V., Selyatitskaya, V.G., and Kaznacheev, V.P., Dynamics of physiological characteristics and emotional–behavioral reactivity of animals in a preformed geomagnetic medium, Byull. Sib. Otd. Ross. Akad. Med. Nauk, 2005, vol. 25, no. 3, pp. 71–77.

    Google Scholar 

  26. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes, Off. J. Eur Union, 20.10.2010, pp. L276/33–L276/53. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010: 276:0033:0079:EN:PDF.

  27. Dowse, H.B. and Palmer, J.D., Entrainment of circadian activity rhythms in mice by electrostatic fields, Nature, 1969, vol. 222, no. 5193, pp. 564–566.

    Article  Google Scholar 

  28. Engelmann, W., Hellrung, W., and Johnsson, A., Circadian locomotor activity of Musca flies: Recording method and effects of 10 Hz square-wave electric fields, Bioelectromagnetics, 1996, vol. 17, no. 2, pp. 100–110.

    Article  Google Scholar 

  29. Erren, T.C. and Reiter, R.J., Melatonin: A universal time messenger, Neuro Endocrinol. Lett., 2015, vol. 36, no. 3, pp. 187–192.

    Google Scholar 

  30. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS no. 123), Strasbourg, March 18, 1986, Part III, Article 6. https://rm.coe.int/168007a67b.

  31. Garkavi, L.Kh., Kvakina, E.B., and Kuz’menko, T.S., Antistressornye reaktsii i aktivatsionnaya terapiya (Antistressor Reactions and Activation Therapy), Moscow: Imedis, 1998.

    Google Scholar 

  32. Grigor’ev, Yu.G., Body response in a weakened geomagnetic field. Effect of magnetic deprivation, Rad. Biol. Radioekol., 1995, vol. 35, no. 1, pp. 3–18.

    Google Scholar 

  33. Gurfinkel, Yu.I. and Lyubimov, V.V., Application of passive shielding to protect patients with ischemic heart disease from geomagnetic disturbances, Biophysics, 1998, vol. 43, no. 5, pp. 783–788.

    Google Scholar 

  34. Ismailov, V.A. and Koshelevskii, V.K., Influence of the geomagnetic field variation on circadian activity of epiphysis, Probl. Gerontol., 2008, vol. 21, no. 3, pp. 382–385.

    Google Scholar 

  35. Kalsbeek, A., Verhagen, L.A., Schalij, I., Foppen, E., Saboureau, M., Bothorel, B., Buijs, R.M., and Pévet, P., Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species, Eur. J. Neurosci., 2008, vol. 27, no. 4, pp. 818–827.

    Article  Google Scholar 

  36. Kato, M., Honma, K., Shigemitsu, T., and Shiga, Y., Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats, Bioelectromagnetics, 1993, vol. 14, no. 2, pp. 97–106.

    Article  Google Scholar 

  37. Kay, R.W., Geomagnetic storms: Association with incidence of depression as measured by hospital admission, Br. J. Psychiatry, 1994, vol. 164, no. 3, pp. 403–409.

    Article  Google Scholar 

  38. Khodanovich, M.Yu., Gul’, E.V., Zelenskaya, A.E., Pan, E.S., and Krivova, N.A., Influence of long-term geomagnetic field attenuation on aggressiveness of laboratory rats and activation of opioidergic neurons, Vestn. Tomsk. Gos. Univ.: Biol., 2013, no. 1, pp. 146–160.

    Google Scholar 

  39. Kitaoka, K., Kitamura, M., Aoi, S., Shimizu, N., and Yoshizaki, K., Chronic exposure to an extremely lowfrequency magnetic field induces depression-like behaviour and corticosterone secretion without enhancement of the hypothalamic–pituitary–adrenal axis in mice, Bioelectromagnetics, 2013, vol. 34, no. 1, pp. 43–51.

    Article  Google Scholar 

  40. Kleimenova, N.G. and Troitskaya, V.A., Geomagnetic pulsations as one of ecological environment factors, Biofizika, 1992, vol. 37, pp. 429–438.

    Google Scholar 

  41. Krylov, V.V., Ushakova, N.V., Izyumov, Y.G., Kuz’-mina, V.V., Morozov, A.A., Osipova, E.A., Zotov, O.D., Klain, B.I., Kantserova, N.P., Lysenko, L.A., Nemova, N.N., and Znobisheva, A.V., An experimental study of the biological effects of geomagnetic disturbances: The impact of a typical geomagnetic storm and its constituents on plants and animals, J. Atmos. Sol.-Terr. Phys., 2014, vol. 110–111, pp. 28–36.

    Google Scholar 

  42. Kumlin, T., Heikkinen, P., Laitinen, J.T., and Juutilainen, J., Exposure to a 50-Hz magnetic field induces a circadian rhythm in 6-hydroxymelatonin sulfate excretion in mice, J. Radiat. Res., 2005, vol. 46, pp. 313–318.

    Article  Google Scholar 

  43. Lerchl, A., Zachmann, A., Ather Ali, M., and Reiter, R.J., The effects of pulsing magnetic fields on pineal melatonin synthesis in a teleost fish (brook trout, Salvelinus fontinalis), Neurosci. Lett., 1998, vol. 256, pp. 171–173.

    Article  Google Scholar 

  44. Lewczuk, B., Redlarski, G., Żak, A., Ziółkowska, N., Przybylska-Gornowicz, B., and Krawczuk, M., Influence of electric, magnetic, and electromagnetic fields on the circadian system: Current stage of knowledge, BioMed Res. Int., 2014, vol. 2014, id 169459.

    Google Scholar 

  45. Makeev, V.B. and Temuryants, N.A., Study of the frequency dependence of biological efficiency of the magnetic field in the geomagnetic field range (0.01–100 Hz), Probl. Kosm. Biol., 1982, vol. 43, pp. 116–128.

    Google Scholar 

  46. Malhotra, S., Sawhney, G., and Pandhi, P., The therapeutic potential of melatonin: A review of the science, Medscape Gen. Med., 2004, vol. 6, no. 2, p. 46.

    Google Scholar 

  47. Manchester, L.C., Coto-Montes, A., Boga, J.A., Andersen, L.P., Zhou, Z., Galano, A., Vriend, J., Tan, D.X., and Reiter, R.J., Melatonin: An ancient molecule that makes oxygen metabolically tolerable, J. Pineal. Res., 2015, vol. 59, no. 4, pp. 403–419.

    Article  Google Scholar 

  48. Markel’, A.L., On the evaluation of main characteristics of rat behavior in the “open field” test, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 1981, vol. 31, no. 2, pp. 301–307.

    Google Scholar 

  49. Martynyuk, V.S. and Temuryants, N.A., Extremely lowfrequency magnetic fields as a factor of modulation and synchronization of infradian biorhythms in animals, Geofiz. Protsessy Biosfera, 2009, vol. 8, no. 1, pp. 36–50.

    Google Scholar 

  50. Martynyuk, V.S., Vladimirskii, B.M., and Temuryants, N.A., Biological rhythms and electromagnetic fields in environmental conditions, Geofiz. Protsessy Biosfera, 2006, vol. 5, no. 1, pp. 5–23.

    Google Scholar 

  51. Mikhailov, A.V., Functional morphology of blood neutrophils in rats during the adaptation to hypokinesis, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1985.

    Google Scholar 

  52. Mulligan, B.P., Gang, N., Parker, G.H., and Persinger, M.A., Magnetic field intensity/melatonin–molarity interactions: Experimental support with planarian (Dugesia sp.) activity for a resonance-like process, Open J. Biophys., 2012, vol. 2, pp. 137–143.

    Article  Google Scholar 

  53. Munro, S., Lewin, S., Swart, T., and Volmink, J., A review of health behaviour theories: How useful are these for developing interventions to promote long-term medication adherence for TB and HIV/AIDS?, BMC Public Health, 2007, vol. 7, id 104.

    Google Scholar 

  54. Nolan, K.A. and Citrome, L., Reducing inpatient aggression: Does paying attention pay off?, Psychiatr. J., 2008, vol. 79, no. 2, pp. 91–95.

    Google Scholar 

  55. Olcese, J. and Reuss, S., Magnetic field effects on pineal gland melatonin synthesis: Comparative studies on albino and pigmented rodents, Brain Res., 1986, vol. 369, pp. 365–368.

    Article  Google Scholar 

  56. Oraevskii, V.N., Breus, T.K., Baevskii, R.M., Rapoport, S.I., Petrov, V.M., Barsukova, Z.V., Gurfinkel’, Yu.I., and Rogoza, A.T., Geomagnetic activity effects on the functional characteristics of the human organism, Biophysics, 1998, vol. 43, no. 5, pp. 776–782.

    Google Scholar 

  57. Pacchierotti, C., Iapichino, S., Bossini, L., Pieraccini, F., and Castrogiovanni, P., Melatonin in psychiatric disorders: A review on the melatonin involvement in psychiatry, Front. Neuroendocrinol., 2001, vol. 22, pp. 18–32.

    Article  Google Scholar 

  58. Pfluger, D.H. and Minder, C.E., Effects of exposure to 16.7 Hz urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers, J. Pineal Res., 1996, vol. 21, no. 2, pp. 91–100.

    Article  Google Scholar 

  59. Polk, G. and Fitchen, F., Schumann resonances of the Earth–Ionosphere cavity—Extremely low frequency reception at Kingston, R.I., J. Res. Natl. Bur. Stand., Sect. D, 1962, vol. 66D, no. 3, pp. 313–318.

    Google Scholar 

  60. Poole, C., Kavet, R., Funch, D.P., Donelan, K., Charry, J.M., and Dreyer, N.A., Depressive symptoms and headaches in relation to proximity of residence to an alternating current transmission line right-of-way, Am. J. Epidemiol., 1993, vol. 137, no. 3, pp. 318–330.

    Article  Google Scholar 

  61. Porsolt, R.D. and Pinchon, M.L., Depression: A new animal model sensitive to antidepressant treatments, Nature, 1977, vol. 266, pp. 730–732.

    Article  Google Scholar 

  62. Qin, C., Evans, J.M., Yamanashi, W.S., Sherlang, B.I., and Foreman, R.D., Effects on rats of low intensity and frequency electromagnetic field stimulation on thoracic spinal neurons receiving noxious cardiac and esophageal inputs, Neuromodulation, 2005, vol. 8, no. 2, pp. 79–87.

    Article  Google Scholar 

  63. Rabe-Jablonska, J. and Szymanska, A., Diurnal profile of melatonin in the acute phase of major depression and in remission, Med. Sci. Monit., 2001, vol. 7, pp. 946–952.

    Google Scholar 

  64. Rapoport, S.I., Bol’shakova, N.D., Malinovskaya, N.K., Meshcheryakova, S.A., Oraevsky, V.N., Breus, T.K., and Sosnovsky, A.M., Magnetic storms as a stress factor, Biophysics, 1998, vol. 43, no. 4, pp. 596–602.

    Google Scholar 

  65. Rapoport, S.I. and Golichenkov, V.A., Melatonin: teoriya i praktika (Melatonin: Theory and Practice), Moscow: Medpraktika, 2009.

    Google Scholar 

  66. Rapoport, S.I. and Breus, T.K., Melatonin as a most important factor of natural electromagnetic fields impacting patients with hypertensive disease and coronary heart disease. Part 1, Klin. Med., 2011a, vol. 89, no. 3, pp. 9–14.

    Google Scholar 

  67. Rapoport, S.I. and Breus, T.K., Melatonin as a most important factor in the action of weak natural magnetic fields on patients with hypertensive disease and coronary heart disease. Part 2, Klin. Med., 2011b, vol. 89, no. 4, pp. 4–7.

    Google Scholar 

  68. Reiter, R.J., Anderson, L.E., Buschbom, R.L., and Wilson, B.W., Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth, Life Sci., 1988, vol. 42, no. 22, pp. 2203–2206.

    Article  Google Scholar 

  69. Reiter, R.J., Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin, J. Cell. Biochem., 1993, vol. 51, pp. 394–403.

    Article  Google Scholar 

  70. Reuss, S. and Olcese, J., Magnetic field effects on the rat pineal gland: Role of retinal activation by light, Neurosci. Lett., 1986, vol. 64, pp. 97–101.

    Article  Google Scholar 

  71. Ritz, T., Adem, S., and Schulten, K., A model for photoreceptor- based magnetoreception in birds, Biophys. J., 2000, vol. 78, pp. 707–718.

    Article  Google Scholar 

  72. Rosenspire, A.J., Kindzelskii, A.L., and Petty, H.R., Pulsed DC electric fields couple to natural NAD(P)H oscillation in HT-1080 fibrosarcoma cells, J. Cell Sci., 2001, vol. 114, no. 8, pp. 1515–1520.

    Google Scholar 

  73. Röösli, M., Lortscher, M., Egger, M., Pfluger, D., Schreier, N., Lortscher, E., Locher, P., Spoerri, A., and Minder, C., Mortality from neurodegenerative disease and exposure to extremely low-frequency magnetic fields: 31 years of observations on Swiss railway employees, Neuroepidemiology, 2007, vol. 28, no. 4, pp. 197–206.

    Article  Google Scholar 

  74. Salunke, B.P., Umathe, S.N., and Chavan, J.G., Behavioral ineffectiveness of high frequency electromagnetic field in mice, Physiol. Behav., 2015, vol. 140, pp. 32–37.

    Article  Google Scholar 

  75. Samuels, C.H., Jet lag and travel fatigue: A comprehensive management plan for sport medicine physicians and high-performance support teams, Clin. J. Sport Med., 2012, vol. 22, no. 3, pp. 268–273.

    Article  Google Scholar 

  76. Sandyk, R., Rapid normalization of visual evoked potentials by picoTesla range magnetic fields in chronic progressive multiple sclerosis, Int. J. Neurosci., 1994, vol. 77, no. 304, pp. 243–259.

    Article  Google Scholar 

  77. Schumann, W.O., Über die Dämpfung der elektromagnetischen Eigenschwingungen des Systems Erde–Luft–Ionosphäre, Naturwissenschaften, 1982, vol. 7, pp. 250–254.

    Google Scholar 

  78. Selye, H., The Story of the Adaptation Syndrome, Montreal: Acta Medical Publishers, 1952; Moscow: Meditsina, 1960.

    Google Scholar 

  79. Selmaoui, B. and Touitou, Y., Sinusoidal 50-Hz magnetic fields depress rat pineal nat activity and serum melatonin: Role of duration and intensity of exposure, Life Sci., 1995, vol. 57, no. 14, pp. 1351–1358.

    Article  Google Scholar 

  80. Semm, P., Schneider, T., and Vollratch, L., Effects of Earth-strength magnetic field on electrical activity of pineal cells, Nature, 1980, vol. 288, pp. 607–608.

    Article  Google Scholar 

  81. Shchetinin, E.V., Baturin, V.A., Arushanyan, E.B., Ovanesov, K.B., and Popov, A.V., Biorhythmological approach to the assessment of forced swimming as an experimental model of “depressive” state, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 1989, vol. 39, no. 5, pp. 958–964.

    Google Scholar 

  82. Solov’yov, I.A. and Schulten, K., Magnetoreception through cryptochrome may involve superoxide, Biophys. J., 2009, vol. 96, pp. 4804–4813.

    Article  Google Scholar 

  83. Srinivasan, V., Pandi-Perumal, S.R., Cardinali, D.P., Poeggeler, B., and Hardeland, R., Melatonin in Alzheimer’s disease and other neurodegenerative disorders, Behav. Brain Funct., 2006a, vol. 2, p. 15.

    Google Scholar 

  84. Srinivasan, V., Smits, M., Spence, W., Lowe, A.D., Kayumov, L., Pandi-Perumal, S.R., Parry, B., and Cardinali, D.P., Melatonin in mood disorders, World J. Biol. Psychiatry, 2006b, vol. 7, no. 3, pp. 138–152.

    Article  Google Scholar 

  85. Srinivasan, V., Lauterbach, E.C., Ho, K.Y., Acuna-Castroviego, D., Zakaria, R., and Brzezinsky, A., Melatonin in antinociception: Its therapeutic applications, Curr. Neuropharmacol., 2012, vol. 10, no. 2, pp. 167–178.

    Article  Google Scholar 

  86. Stehle, J., Reuss, S., Schröder, H., Henschel, M., and Vollrath, L., Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbilrole of pigmentation and sex, Physiol. Behav., 1988, vol. 44, pp. 91–94.

    Article  Google Scholar 

  87. St-Pierre, L.S., Persinger, M.A., and Koren, S.A., Experimental induction of inter-male aggressive behavior in limbic epileptic rats by weak, complex magnetic fields: Implications for geomagnetic activity and the modern habitat?, Int. J. Neurosci., 1998, vol. 96, nos. 3–4, pp. 149–159.

    Article  Google Scholar 

  88. Szemerzsky, R., Zelena, D., Barna, I., and Bardos, G., Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats, Brain Res. Bull., 2010, vol. 81, no. 1, pp. 92–99.

    Article  Google Scholar 

  89. Tan, D.-X., Zheng, X., Kong, J., and Lucien, C., Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: Relation to their biological functions, Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 15858–15890.

    Article  Google Scholar 

  90. Temuryants, N.A., On biological efficiency of a weak EMF of infralow frequency, Probl. Kosm. Biol., 1982, vol. 43, pp. 128–139.

    Google Scholar 

  91. Temuryants, N.A., Vladimirskii, B.M., and Tishkin, O.G., Sverkhnizkochastotnye elektromagnitnye signaly v biologicheskom mire (ELF Electromagnetic Signals in the Biological World), Kiev: Naukova dumka, 1992 [in Russian].

    Google Scholar 

  92. Temuryants, N.A., Shekhotkin, A.V., and Martynyuk, V.S., Roles of some components of the amine precursor uptake and decarboxylation system in responding to magnetobiological influences, Biophysics, 2001, vol. 46, no. 5, pp. 867–870.

    Google Scholar 

  93. Temuryants, N.A., Martynyuk, V.S., Chuyan, E.N., Minko, V.A., and Brusil, I.A., Changes in the infradian rhythmicity of blood lymphocyte dehydrogenases in rats exposed to an extremely low frequency variable magnetic field, Biophysics, 2004, vol. 49, Suppl. 1, pp. S26–S31.

    Google Scholar 

  94. Temuryants, N.A. and Demtsun, N.A., Seasonal differences in the regeneration of planarians under conditions of long-term electromagnetic shielding, Biophysics, 2010, vol. 55, no. 4, pp. 628–632.

    Article  Google Scholar 

  95. Temuryants, N.A., Demtsun, N.A., Kostyuk, A.S., and Yarmolyuk, N.S., Specific features of the planarian Dugesia tigrina regeneration and mollusk Helix albescens nociception under weak electromagnetic shielding, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 7, pp. 761–770.

    Article  Google Scholar 

  96. Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Participation of melatonin in the change in nociception of mollusks and mice under long-term electromagnetic shielding, Ross. Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 99, no. 11, pp. 1333–1341.

    Google Scholar 

  97. Temuryants, N.A. and Kostyuk, A.S., Influence of an ELF variable magnetic field on the activity of the opioid system of mollusks under long-term electromagnetic shielding, Geofiz. Protsessy Biosfera, 2015, vol. 14, no. 1, pp. 42–52.

    Google Scholar 

  98. Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Involvement of melatonin in changes in nociception in mollusks and mice in long-term electromagnetic screening, Neurosci. Behav. Physiol., 2015a, vol. 45, no. 6, pp. 664–669.

    Article  Google Scholar 

  99. Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Electromagnetic shielding changes the behavior of rats, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2015b, vol. 65, no. 2, pp. 222–229.

    Google Scholar 

  100. Touitou, Y. and Selmaoui, B., The effects of extremely lowfrequency magnetic fields on melatonin and cortisol, two marker rhythms of the circadian system, Dialogues Clin. Neurosci., 2012, vol. 14, no. 4, pp. 381–399.

    Google Scholar 

  101. Vladimirskii, B.M. and Temuryants, N.A., Vliyanie solnechnoi aktivnosti na biosferu–noosferu (Solar Activity Effect on the Biosphere–Noosphere), Moscow: MNEPU, 2000 [in Russian].

    Google Scholar 

  102. Weydahl, A., Sothern, R.B., Cornélissen, G., and Wetterberg, L., Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N, Biomed. Pharmacother., 2001, vol. 55, no. 1, pp. 57–62.

    Google Scholar 

  103. Wilson, B.W., Anderson, L.E., Hilton, D.I., and Phillips, R.D., Chronic exposure to 60 Hz electric fields: Effects on pineal function in the rat, Bioelectromagnetics, 1981, vol. 2, no. 4, pp. 371–380.

    Article  Google Scholar 

  104. Wilson, B.W., Chronic exposure to ELF fields may induce depression, Bioelectromagnetics, 1988, vol. 9, no. 2, pp. 195–205.

    Article  Google Scholar 

  105. Wu, Y.H., Zhou, J.N., Balesar, R., Unmehopa, U., Bao, A., Jockers, R., Heerikuize, J.V., and Swaab, D.F., Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotrophin-releasing hormone, J. Comput. Neurol., 2006, vol. 499, no. 6, pp. 897–910.

    Article  Google Scholar 

  106. Yaga, K., Reiter, R.J., Manchester, L.C., Nieves, H., Sun, J.H., and Chen, L.D., Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod, Brain Res. Bull., 1993, vol. 30, pp. 153–156.

    Article  Google Scholar 

  107. Yellon, S.M., Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster, J. Pineal Res., 1994, vol. 16, pp. 136–144.

    Article  Google Scholar 

  108. Zamoshchina, T.A., Krivova, N.A., Khodanovich, M.Yu., Trukhanov, K.A., Tukhvatulin, R.T., Zaeva, O.B., Zelenskaya, A.E., and Gul’, E.V., Influence of modeled hypomagnetic conditions of long-range space flights on the rhythmic structure of rat behavioral activity, Aviakosm. Ekol. Med., 2012, vol. 46, no. 1, pp. 17–23.

    Google Scholar 

  109. Zaslavskaya, R.M., Optimizatsiya lecheniya meteo- i magnitochuvstvitel’nykh bol’nykh arterial’noi gipertenziei i ishemicheskoi bolezn’yu serdtsa s ispol’zovaniem adaptogenov (Optimization of Adaptogen-Based Treatment of Arterial Hypertension and Ischemic Heart Disease Patients with Sensitivity to Meteorological and Magnetic Disturbances), Moscow: Medpraktika, 2012 [in Russian].

    Google Scholar 

  110. Zhang, X., Li, J.F., Wu, Q.J., Li, B., and Jiang, J.C., Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster, Bioelectromagnetics, 2007, vol. 28, no. 2, pp. 155–158.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Temuryants.

Additional information

Original Russian Text © N.A. Temuryants, K.N. Tumanyants, D.R. Khusainov, I.V. Cheretaev, E.N. Tumanyants, 2016, published in Geofizicheskie Protsessy i Biosfera, 2016, Vol. 15, No. 3, pp. 67–85.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Temuryants, N.A., Tumanyants, K.N., Khusainov, D.R. et al. Involvement of Melatonin in Changing Depression-Like and Aggressive Behaviour in Rats Under Moderate Electromagnetic Shielding. Izv. Atmos. Ocean. Phys. 53, 699–710 (2017). https://doi.org/10.1134/S0001433817070088

Download citation

Keywords

  • electromagnetic shielding
  • depression-like behavior
  • intraspecies aggression
  • melatonin
  • forced-swimming test