Skip to main content
Log in

Involvement of Melatonin in Changing Depression-Like and Aggressive Behaviour in Rats Under Moderate Electromagnetic Shielding

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

It was found that moderate electromagnetic shielding, which attenuates constant and variable components of the geomagnetic field (19 h per day for 10 days), induces in male rats the development of depression-like behavior. This behavior is diagnosed on the basis of increased passive swimming time and a decreased duration of active swimming in the Porsolt test. These behaviors reach their peak on days 3–4 of the experiment. The daily administration of 1 mg/kg exogenous melatonin reduces these depression-like behaviors as soon as day 1 of the experiment, and this effect persists throughout all stages of the experiment. Electromagnetic shielding and the administration of 1 mg/kg exogenous melatonin do not change the levels of intraspecies aggressiveness. An increase in melatonin dosage to 5 mg/kg even further reduces depression-like symptoms and stops the increase in intraspecies aggressiveness during the experiment. The conclusion is made that melatonin plays an important role in the mechanisms of physiological effects of a weakened electromagnetic geomagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Khadda, R.Kh., Reactions of mast cells to the action of weak ELF magnetic fields, Extended Abstract of Cand. Sci. (Biology) Dissertation, 2003.

    Google Scholar 

  • Anisimov, V.N., Epiphysis, melatonin, and aging, in Khronobiologiya i khronomeditsina: Rukovodstvo (Chronobiology and Chronomedicine: A Handbook) Moscow: Med. inform. agentstvo, 2012, pp. 284–333.

    Google Scholar 

  • Arushanyan, E.B., Epiphysis and depression, Zh. Nevropatol. Psikhiatr. im. S. S. Korsakova, 1991, vol. 91, no. 6, pp. 108–112.

    Google Scholar 

  • Bakos, J., Nagy, N., Thuróczy, G., and Szabó, L.D., Sinusoidal 50 Hz, 500 microT magnetic field has no acute effect on urinary 6-sulphatoxymelatonin in Wistar rats, Bioelectromagnetics, 1995, vol. 16, no. 6, pp. 377–380.

    Article  Google Scholar 

  • Bakos, J., Nagy, N., Thuróczy, G., and Szabó, L.D., Urinary 6-sulphatoxymelatonin excretion is increased in rats after 24 hours of exposure to vertical 50 Hz, 100 microT magnetic field, Bioelectromagnetics, 1997, vol. 18, no. 2, pp. 190–192.

    Article  Google Scholar 

  • Baler, R., Coon, S., and Klein, D.S., Orphan nuclear receptor Rzr-beta-cyclic-AMP regulates expression in the pineal gland, Biochem. Biophys. Res. Commun., 1996, vol. 220, pp. 975–978.

    Article  Google Scholar 

  • Beck-Friis, J., Kjellman, B.F., Aperia, B., Unden, F., von Rosen, D., Ljunggren, J.-G., and Wetterberg, L., Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome, Acta Psychiatr. Scand., 1985, vol. 71, no. 4, pp. 319–330.

    Article  Google Scholar 

  • Belova, N.A., Ermakov, A.M., Znobishcheva, A.V., Srebnitskaya, L.K., and Lednev, V.V., The influence of extremely weak alternating magnetic fields on the regeneration of planarians and the gravitropic response of plants, Biophysics, 2010, vol. 55, no. 4, pp. 623–627.

    Article  Google Scholar 

  • Binhi, V.N., Nuclear spins in primary mechanisms of the biological action of magnetic fields, Biofizika, 1995, vol. 40, no. 3, pp. 677–691.

    Google Scholar 

  • Binhi, V.N., Theoretical concepts in magnetobiology, Electro-Magnetobiol., 2001, vol. 20, no. 1, pp. 43–58.

    Article  Google Scholar 

  • Binhi, V.N., Magnetobiology: Underlying Physical Problems, San Diego: Academic, 2002.

    Google Scholar 

  • Bliss, V.L. and Heppner, F.H., Circadian activity rhythm influenced by near zero magnetic field, Nature, 1976, vol. 261, no. 5559, pp. 411–412.

    Article  Google Scholar 

  • Brown, S.L., Steinberg, R.L., and Van Praag, H.M., The pathogenesis of depression: Reconsideration of neurotransmitter data, in Handbook of Depression and Anxiety: A Biological Approach, New York: Marcel Dekker, 1994, pp. 317–347.

    Google Scholar 

  • Buresh, Ya., Bureshova, O., and Huston, D.P., Paininduced aggression, in Metodiki i osnovnye eksperimenty po izucheniyu mozga i povedeniya (Techniques and Basic Experiments on Brain and Behavioral Studies), Moscow: Vysshaya shkola, 1991, pp. 130–131.

    Google Scholar 

  • Burch, J.B., Reif, J.S., and Yost, M.G., Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans, Neurosci. Lett., 1999, vol. 266, pp. 209–212.

    Article  Google Scholar 

  • Burch, J.B., Reif, J.S., Noonan, C.W., and Yost, M.G., Melatonin metabolite levels in workers exposed to 60-Hz magnetic fields: Work in substations and with 3-phase conductors, J. Occup. Environ. Med., 2000, vol. 42, pp. 136–142.

    Article  Google Scholar 

  • Burch, J.B., Reif, J.S., and Yost, M.G., Geomagnetic activity and human melatonin metabolite excretion, Neurosci. Lett., 2008, vol. 438, pp. 76–79.

    Article  Google Scholar 

  • Cashmore, A., Jarillo, J., Wu, Y-J., and Liu, D., Cryptochromes: Blue light receptors for plants and animals, Science, 1999, vol. 284, pp. 760–765.

    Article  Google Scholar 

  • Cherry, N., Schumann resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity, Nat. Hazards, 2002, vol. 26, pp. 279–331.

    Article  Google Scholar 

  • Chizhevsky, A.L., Zemnoe ekho solnechnykh bur’ (The Terrestrial Echo of Solar Storms), Moscow: Mysl’, 1976.

    Google Scholar 

  • Close, J., Are stress responses to geomagnetic storms mediated by the cryptochrome compass system?, Proc. Biol. Sci., 2012, vol. 279, no. 1736, pp. 2081–2090.

    Article  Google Scholar 

  • Close, J., The compass within the clock. Part 1. The hypothesis of magnetic fields as secondary zeitgebers to the circadian system-logical and scientific objections, Hypothesis, 2014, vol. 12, no. 1, e1.

    Google Scholar 

  • Cremer-Bartels, G., Krause, K., and Kuchle, H.J., Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans, Graefe’s Arch. Clin. Exp. Ophthalmol., 1983, vol. 220, no. 5, pp. 248–252.

    Article  Google Scholar 

  • Cremer-Bartels, G., Krause, K., Mitoskas, G., and Brodersen, D., Magnetic field of the Earth as additional zeitgeber for endogenous rhythms?, Naturwissenschaften, 1984, vol. 71, no. 11, pp. 567–574.

    Article  Google Scholar 

  • Devitsin, D.V., Pal’chikova, N.A., Trofimov, A.V., Selyatitskaya, V.G., and Kaznacheev, V.P., Dynamics of physiological characteristics and emotional–behavioral reactivity of animals in a preformed geomagnetic medium, Byull. Sib. Otd. Ross. Akad. Med. Nauk, 2005, vol. 25, no. 3, pp. 71–77.

    Google Scholar 

  • Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes, Off. J. Eur Union, 20.10.2010, pp. L276/33–L276/53. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010: 276:0033:0079:EN:PDF.

  • Dowse, H.B. and Palmer, J.D., Entrainment of circadian activity rhythms in mice by electrostatic fields, Nature, 1969, vol. 222, no. 5193, pp. 564–566.

    Article  Google Scholar 

  • Engelmann, W., Hellrung, W., and Johnsson, A., Circadian locomotor activity of Musca flies: Recording method and effects of 10 Hz square-wave electric fields, Bioelectromagnetics, 1996, vol. 17, no. 2, pp. 100–110.

    Article  Google Scholar 

  • Erren, T.C. and Reiter, R.J., Melatonin: A universal time messenger, Neuro Endocrinol. Lett., 2015, vol. 36, no. 3, pp. 187–192.

    Google Scholar 

  • European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS no. 123), Strasbourg, March 18, 1986, Part III, Article 6. https://rm.coe.int/168007a67b.

  • Garkavi, L.Kh., Kvakina, E.B., and Kuz’menko, T.S., Antistressornye reaktsii i aktivatsionnaya terapiya (Antistressor Reactions and Activation Therapy), Moscow: Imedis, 1998.

    Google Scholar 

  • Grigor’ev, Yu.G., Body response in a weakened geomagnetic field. Effect of magnetic deprivation, Rad. Biol. Radioekol., 1995, vol. 35, no. 1, pp. 3–18.

    Google Scholar 

  • Gurfinkel, Yu.I. and Lyubimov, V.V., Application of passive shielding to protect patients with ischemic heart disease from geomagnetic disturbances, Biophysics, 1998, vol. 43, no. 5, pp. 783–788.

    Google Scholar 

  • Ismailov, V.A. and Koshelevskii, V.K., Influence of the geomagnetic field variation on circadian activity of epiphysis, Probl. Gerontol., 2008, vol. 21, no. 3, pp. 382–385.

    Google Scholar 

  • Kalsbeek, A., Verhagen, L.A., Schalij, I., Foppen, E., Saboureau, M., Bothorel, B., Buijs, R.M., and Pévet, P., Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species, Eur. J. Neurosci., 2008, vol. 27, no. 4, pp. 818–827.

    Article  Google Scholar 

  • Kato, M., Honma, K., Shigemitsu, T., and Shiga, Y., Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats, Bioelectromagnetics, 1993, vol. 14, no. 2, pp. 97–106.

    Article  Google Scholar 

  • Kay, R.W., Geomagnetic storms: Association with incidence of depression as measured by hospital admission, Br. J. Psychiatry, 1994, vol. 164, no. 3, pp. 403–409.

    Article  Google Scholar 

  • Khodanovich, M.Yu., Gul’, E.V., Zelenskaya, A.E., Pan, E.S., and Krivova, N.A., Influence of long-term geomagnetic field attenuation on aggressiveness of laboratory rats and activation of opioidergic neurons, Vestn. Tomsk. Gos. Univ.: Biol., 2013, no. 1, pp. 146–160.

    Google Scholar 

  • Kitaoka, K., Kitamura, M., Aoi, S., Shimizu, N., and Yoshizaki, K., Chronic exposure to an extremely lowfrequency magnetic field induces depression-like behaviour and corticosterone secretion without enhancement of the hypothalamic–pituitary–adrenal axis in mice, Bioelectromagnetics, 2013, vol. 34, no. 1, pp. 43–51.

    Article  Google Scholar 

  • Kleimenova, N.G. and Troitskaya, V.A., Geomagnetic pulsations as one of ecological environment factors, Biofizika, 1992, vol. 37, pp. 429–438.

    Google Scholar 

  • Krylov, V.V., Ushakova, N.V., Izyumov, Y.G., Kuz’-mina, V.V., Morozov, A.A., Osipova, E.A., Zotov, O.D., Klain, B.I., Kantserova, N.P., Lysenko, L.A., Nemova, N.N., and Znobisheva, A.V., An experimental study of the biological effects of geomagnetic disturbances: The impact of a typical geomagnetic storm and its constituents on plants and animals, J. Atmos. Sol.-Terr. Phys., 2014, vol. 110–111, pp. 28–36.

    Google Scholar 

  • Kumlin, T., Heikkinen, P., Laitinen, J.T., and Juutilainen, J., Exposure to a 50-Hz magnetic field induces a circadian rhythm in 6-hydroxymelatonin sulfate excretion in mice, J. Radiat. Res., 2005, vol. 46, pp. 313–318.

    Article  Google Scholar 

  • Lerchl, A., Zachmann, A., Ather Ali, M., and Reiter, R.J., The effects of pulsing magnetic fields on pineal melatonin synthesis in a teleost fish (brook trout, Salvelinus fontinalis), Neurosci. Lett., 1998, vol. 256, pp. 171–173.

    Article  Google Scholar 

  • Lewczuk, B., Redlarski, G., Żak, A., Ziółkowska, N., Przybylska-Gornowicz, B., and Krawczuk, M., Influence of electric, magnetic, and electromagnetic fields on the circadian system: Current stage of knowledge, BioMed Res. Int., 2014, vol. 2014, id 169459.

    Google Scholar 

  • Makeev, V.B. and Temuryants, N.A., Study of the frequency dependence of biological efficiency of the magnetic field in the geomagnetic field range (0.01–100 Hz), Probl. Kosm. Biol., 1982, vol. 43, pp. 116–128.

    Google Scholar 

  • Malhotra, S., Sawhney, G., and Pandhi, P., The therapeutic potential of melatonin: A review of the science, Medscape Gen. Med., 2004, vol. 6, no. 2, p. 46.

    Google Scholar 

  • Manchester, L.C., Coto-Montes, A., Boga, J.A., Andersen, L.P., Zhou, Z., Galano, A., Vriend, J., Tan, D.X., and Reiter, R.J., Melatonin: An ancient molecule that makes oxygen metabolically tolerable, J. Pineal. Res., 2015, vol. 59, no. 4, pp. 403–419.

    Article  Google Scholar 

  • Markel’, A.L., On the evaluation of main characteristics of rat behavior in the “open field” test, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 1981, vol. 31, no. 2, pp. 301–307.

    Google Scholar 

  • Martynyuk, V.S. and Temuryants, N.A., Extremely lowfrequency magnetic fields as a factor of modulation and synchronization of infradian biorhythms in animals, Geofiz. Protsessy Biosfera, 2009, vol. 8, no. 1, pp. 36–50.

    Google Scholar 

  • Martynyuk, V.S., Vladimirskii, B.M., and Temuryants, N.A., Biological rhythms and electromagnetic fields in environmental conditions, Geofiz. Protsessy Biosfera, 2006, vol. 5, no. 1, pp. 5–23.

    Google Scholar 

  • Mikhailov, A.V., Functional morphology of blood neutrophils in rats during the adaptation to hypokinesis, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1985.

    Google Scholar 

  • Mulligan, B.P., Gang, N., Parker, G.H., and Persinger, M.A., Magnetic field intensity/melatonin–molarity interactions: Experimental support with planarian (Dugesia sp.) activity for a resonance-like process, Open J. Biophys., 2012, vol. 2, pp. 137–143.

    Article  Google Scholar 

  • Munro, S., Lewin, S., Swart, T., and Volmink, J., A review of health behaviour theories: How useful are these for developing interventions to promote long-term medication adherence for TB and HIV/AIDS?, BMC Public Health, 2007, vol. 7, id 104.

    Google Scholar 

  • Nolan, K.A. and Citrome, L., Reducing inpatient aggression: Does paying attention pay off?, Psychiatr. J., 2008, vol. 79, no. 2, pp. 91–95.

    Google Scholar 

  • Olcese, J. and Reuss, S., Magnetic field effects on pineal gland melatonin synthesis: Comparative studies on albino and pigmented rodents, Brain Res., 1986, vol. 369, pp. 365–368.

    Article  Google Scholar 

  • Oraevskii, V.N., Breus, T.K., Baevskii, R.M., Rapoport, S.I., Petrov, V.M., Barsukova, Z.V., Gurfinkel’, Yu.I., and Rogoza, A.T., Geomagnetic activity effects on the functional characteristics of the human organism, Biophysics, 1998, vol. 43, no. 5, pp. 776–782.

    Google Scholar 

  • Pacchierotti, C., Iapichino, S., Bossini, L., Pieraccini, F., and Castrogiovanni, P., Melatonin in psychiatric disorders: A review on the melatonin involvement in psychiatry, Front. Neuroendocrinol., 2001, vol. 22, pp. 18–32.

    Article  Google Scholar 

  • Pfluger, D.H. and Minder, C.E., Effects of exposure to 16.7 Hz urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers, J. Pineal Res., 1996, vol. 21, no. 2, pp. 91–100.

    Article  Google Scholar 

  • Polk, G. and Fitchen, F., Schumann resonances of the Earth–Ionosphere cavity—Extremely low frequency reception at Kingston, R.I., J. Res. Natl. Bur. Stand., Sect. D, 1962, vol. 66D, no. 3, pp. 313–318.

    Google Scholar 

  • Poole, C., Kavet, R., Funch, D.P., Donelan, K., Charry, J.M., and Dreyer, N.A., Depressive symptoms and headaches in relation to proximity of residence to an alternating current transmission line right-of-way, Am. J. Epidemiol., 1993, vol. 137, no. 3, pp. 318–330.

    Article  Google Scholar 

  • Porsolt, R.D. and Pinchon, M.L., Depression: A new animal model sensitive to antidepressant treatments, Nature, 1977, vol. 266, pp. 730–732.

    Article  Google Scholar 

  • Qin, C., Evans, J.M., Yamanashi, W.S., Sherlang, B.I., and Foreman, R.D., Effects on rats of low intensity and frequency electromagnetic field stimulation on thoracic spinal neurons receiving noxious cardiac and esophageal inputs, Neuromodulation, 2005, vol. 8, no. 2, pp. 79–87.

    Article  Google Scholar 

  • Rabe-Jablonska, J. and Szymanska, A., Diurnal profile of melatonin in the acute phase of major depression and in remission, Med. Sci. Monit., 2001, vol. 7, pp. 946–952.

    Google Scholar 

  • Rapoport, S.I., Bol’shakova, N.D., Malinovskaya, N.K., Meshcheryakova, S.A., Oraevsky, V.N., Breus, T.K., and Sosnovsky, A.M., Magnetic storms as a stress factor, Biophysics, 1998, vol. 43, no. 4, pp. 596–602.

    Google Scholar 

  • Rapoport, S.I. and Golichenkov, V.A., Melatonin: teoriya i praktika (Melatonin: Theory and Practice), Moscow: Medpraktika, 2009.

    Google Scholar 

  • Rapoport, S.I. and Breus, T.K., Melatonin as a most important factor of natural electromagnetic fields impacting patients with hypertensive disease and coronary heart disease. Part 1, Klin. Med., 2011a, vol. 89, no. 3, pp. 9–14.

    Google Scholar 

  • Rapoport, S.I. and Breus, T.K., Melatonin as a most important factor in the action of weak natural magnetic fields on patients with hypertensive disease and coronary heart disease. Part 2, Klin. Med., 2011b, vol. 89, no. 4, pp. 4–7.

    Google Scholar 

  • Reiter, R.J., Anderson, L.E., Buschbom, R.L., and Wilson, B.W., Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth, Life Sci., 1988, vol. 42, no. 22, pp. 2203–2206.

    Article  Google Scholar 

  • Reiter, R.J., Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin, J. Cell. Biochem., 1993, vol. 51, pp. 394–403.

    Article  Google Scholar 

  • Reuss, S. and Olcese, J., Magnetic field effects on the rat pineal gland: Role of retinal activation by light, Neurosci. Lett., 1986, vol. 64, pp. 97–101.

    Article  Google Scholar 

  • Ritz, T., Adem, S., and Schulten, K., A model for photoreceptor- based magnetoreception in birds, Biophys. J., 2000, vol. 78, pp. 707–718.

    Article  Google Scholar 

  • Rosenspire, A.J., Kindzelskii, A.L., and Petty, H.R., Pulsed DC electric fields couple to natural NAD(P)H oscillation in HT-1080 fibrosarcoma cells, J. Cell Sci., 2001, vol. 114, no. 8, pp. 1515–1520.

    Google Scholar 

  • Röösli, M., Lortscher, M., Egger, M., Pfluger, D., Schreier, N., Lortscher, E., Locher, P., Spoerri, A., and Minder, C., Mortality from neurodegenerative disease and exposure to extremely low-frequency magnetic fields: 31 years of observations on Swiss railway employees, Neuroepidemiology, 2007, vol. 28, no. 4, pp. 197–206.

    Article  Google Scholar 

  • Salunke, B.P., Umathe, S.N., and Chavan, J.G., Behavioral ineffectiveness of high frequency electromagnetic field in mice, Physiol. Behav., 2015, vol. 140, pp. 32–37.

    Article  Google Scholar 

  • Samuels, C.H., Jet lag and travel fatigue: A comprehensive management plan for sport medicine physicians and high-performance support teams, Clin. J. Sport Med., 2012, vol. 22, no. 3, pp. 268–273.

    Article  Google Scholar 

  • Sandyk, R., Rapid normalization of visual evoked potentials by picoTesla range magnetic fields in chronic progressive multiple sclerosis, Int. J. Neurosci., 1994, vol. 77, no. 304, pp. 243–259.

    Article  Google Scholar 

  • Schumann, W.O., Über die Dämpfung der elektromagnetischen Eigenschwingungen des Systems Erde–Luft–Ionosphäre, Naturwissenschaften, 1982, vol. 7, pp. 250–254.

    Google Scholar 

  • Selye, H., The Story of the Adaptation Syndrome, Montreal: Acta Medical Publishers, 1952; Moscow: Meditsina, 1960.

    Google Scholar 

  • Selmaoui, B. and Touitou, Y., Sinusoidal 50-Hz magnetic fields depress rat pineal nat activity and serum melatonin: Role of duration and intensity of exposure, Life Sci., 1995, vol. 57, no. 14, pp. 1351–1358.

    Article  Google Scholar 

  • Semm, P., Schneider, T., and Vollratch, L., Effects of Earth-strength magnetic field on electrical activity of pineal cells, Nature, 1980, vol. 288, pp. 607–608.

    Article  Google Scholar 

  • Shchetinin, E.V., Baturin, V.A., Arushanyan, E.B., Ovanesov, K.B., and Popov, A.V., Biorhythmological approach to the assessment of forced swimming as an experimental model of “depressive” state, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 1989, vol. 39, no. 5, pp. 958–964.

    Google Scholar 

  • Solov’yov, I.A. and Schulten, K., Magnetoreception through cryptochrome may involve superoxide, Biophys. J., 2009, vol. 96, pp. 4804–4813.

    Article  Google Scholar 

  • Srinivasan, V., Pandi-Perumal, S.R., Cardinali, D.P., Poeggeler, B., and Hardeland, R., Melatonin in Alzheimer’s disease and other neurodegenerative disorders, Behav. Brain Funct., 2006a, vol. 2, p. 15.

    Google Scholar 

  • Srinivasan, V., Smits, M., Spence, W., Lowe, A.D., Kayumov, L., Pandi-Perumal, S.R., Parry, B., and Cardinali, D.P., Melatonin in mood disorders, World J. Biol. Psychiatry, 2006b, vol. 7, no. 3, pp. 138–152.

    Article  Google Scholar 

  • Srinivasan, V., Lauterbach, E.C., Ho, K.Y., Acuna-Castroviego, D., Zakaria, R., and Brzezinsky, A., Melatonin in antinociception: Its therapeutic applications, Curr. Neuropharmacol., 2012, vol. 10, no. 2, pp. 167–178.

    Article  Google Scholar 

  • Stehle, J., Reuss, S., Schröder, H., Henschel, M., and Vollrath, L., Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbilrole of pigmentation and sex, Physiol. Behav., 1988, vol. 44, pp. 91–94.

    Article  Google Scholar 

  • St-Pierre, L.S., Persinger, M.A., and Koren, S.A., Experimental induction of inter-male aggressive behavior in limbic epileptic rats by weak, complex magnetic fields: Implications for geomagnetic activity and the modern habitat?, Int. J. Neurosci., 1998, vol. 96, nos. 3–4, pp. 149–159.

    Article  Google Scholar 

  • Szemerzsky, R., Zelena, D., Barna, I., and Bardos, G., Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats, Brain Res. Bull., 2010, vol. 81, no. 1, pp. 92–99.

    Article  Google Scholar 

  • Tan, D.-X., Zheng, X., Kong, J., and Lucien, C., Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: Relation to their biological functions, Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 15858–15890.

    Article  Google Scholar 

  • Temuryants, N.A., On biological efficiency of a weak EMF of infralow frequency, Probl. Kosm. Biol., 1982, vol. 43, pp. 128–139.

    Google Scholar 

  • Temuryants, N.A., Vladimirskii, B.M., and Tishkin, O.G., Sverkhnizkochastotnye elektromagnitnye signaly v biologicheskom mire (ELF Electromagnetic Signals in the Biological World), Kiev: Naukova dumka, 1992 [in Russian].

    Google Scholar 

  • Temuryants, N.A., Shekhotkin, A.V., and Martynyuk, V.S., Roles of some components of the amine precursor uptake and decarboxylation system in responding to magnetobiological influences, Biophysics, 2001, vol. 46, no. 5, pp. 867–870.

    Google Scholar 

  • Temuryants, N.A., Martynyuk, V.S., Chuyan, E.N., Minko, V.A., and Brusil, I.A., Changes in the infradian rhythmicity of blood lymphocyte dehydrogenases in rats exposed to an extremely low frequency variable magnetic field, Biophysics, 2004, vol. 49, Suppl. 1, pp. S26–S31.

    Google Scholar 

  • Temuryants, N.A. and Demtsun, N.A., Seasonal differences in the regeneration of planarians under conditions of long-term electromagnetic shielding, Biophysics, 2010, vol. 55, no. 4, pp. 628–632.

    Article  Google Scholar 

  • Temuryants, N.A., Demtsun, N.A., Kostyuk, A.S., and Yarmolyuk, N.S., Specific features of the planarian Dugesia tigrina regeneration and mollusk Helix albescens nociception under weak electromagnetic shielding, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 7, pp. 761–770.

    Article  Google Scholar 

  • Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Participation of melatonin in the change in nociception of mollusks and mice under long-term electromagnetic shielding, Ross. Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 99, no. 11, pp. 1333–1341.

    Google Scholar 

  • Temuryants, N.A. and Kostyuk, A.S., Influence of an ELF variable magnetic field on the activity of the opioid system of mollusks under long-term electromagnetic shielding, Geofiz. Protsessy Biosfera, 2015, vol. 14, no. 1, pp. 42–52.

    Google Scholar 

  • Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Involvement of melatonin in changes in nociception in mollusks and mice in long-term electromagnetic screening, Neurosci. Behav. Physiol., 2015a, vol. 45, no. 6, pp. 664–669.

    Article  Google Scholar 

  • Temuryants, N.A., Kostyuk, A.S., and Tumanyants, K.N., Electromagnetic shielding changes the behavior of rats, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2015b, vol. 65, no. 2, pp. 222–229.

    Google Scholar 

  • Touitou, Y. and Selmaoui, B., The effects of extremely lowfrequency magnetic fields on melatonin and cortisol, two marker rhythms of the circadian system, Dialogues Clin. Neurosci., 2012, vol. 14, no. 4, pp. 381–399.

    Google Scholar 

  • Vladimirskii, B.M. and Temuryants, N.A., Vliyanie solnechnoi aktivnosti na biosferu–noosferu (Solar Activity Effect on the Biosphere–Noosphere), Moscow: MNEPU, 2000 [in Russian].

    Google Scholar 

  • Weydahl, A., Sothern, R.B., Cornélissen, G., and Wetterberg, L., Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N, Biomed. Pharmacother., 2001, vol. 55, no. 1, pp. 57–62.

    Google Scholar 

  • Wilson, B.W., Anderson, L.E., Hilton, D.I., and Phillips, R.D., Chronic exposure to 60 Hz electric fields: Effects on pineal function in the rat, Bioelectromagnetics, 1981, vol. 2, no. 4, pp. 371–380.

    Article  Google Scholar 

  • Wilson, B.W., Chronic exposure to ELF fields may induce depression, Bioelectromagnetics, 1988, vol. 9, no. 2, pp. 195–205.

    Article  Google Scholar 

  • Wu, Y.H., Zhou, J.N., Balesar, R., Unmehopa, U., Bao, A., Jockers, R., Heerikuize, J.V., and Swaab, D.F., Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotrophin-releasing hormone, J. Comput. Neurol., 2006, vol. 499, no. 6, pp. 897–910.

    Article  Google Scholar 

  • Yaga, K., Reiter, R.J., Manchester, L.C., Nieves, H., Sun, J.H., and Chen, L.D., Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod, Brain Res. Bull., 1993, vol. 30, pp. 153–156.

    Article  Google Scholar 

  • Yellon, S.M., Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster, J. Pineal Res., 1994, vol. 16, pp. 136–144.

    Article  Google Scholar 

  • Zamoshchina, T.A., Krivova, N.A., Khodanovich, M.Yu., Trukhanov, K.A., Tukhvatulin, R.T., Zaeva, O.B., Zelenskaya, A.E., and Gul’, E.V., Influence of modeled hypomagnetic conditions of long-range space flights on the rhythmic structure of rat behavioral activity, Aviakosm. Ekol. Med., 2012, vol. 46, no. 1, pp. 17–23.

    Google Scholar 

  • Zaslavskaya, R.M., Optimizatsiya lecheniya meteo- i magnitochuvstvitel’nykh bol’nykh arterial’noi gipertenziei i ishemicheskoi bolezn’yu serdtsa s ispol’zovaniem adaptogenov (Optimization of Adaptogen-Based Treatment of Arterial Hypertension and Ischemic Heart Disease Patients with Sensitivity to Meteorological and Magnetic Disturbances), Moscow: Medpraktika, 2012 [in Russian].

    Google Scholar 

  • Zhang, X., Li, J.F., Wu, Q.J., Li, B., and Jiang, J.C., Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster, Bioelectromagnetics, 2007, vol. 28, no. 2, pp. 155–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Temuryants.

Additional information

Original Russian Text © N.A. Temuryants, K.N. Tumanyants, D.R. Khusainov, I.V. Cheretaev, E.N. Tumanyants, 2016, published in Geofizicheskie Protsessy i Biosfera, 2016, Vol. 15, No. 3, pp. 67–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temuryants, N.A., Tumanyants, K.N., Khusainov, D.R. et al. Involvement of Melatonin in Changing Depression-Like and Aggressive Behaviour in Rats Under Moderate Electromagnetic Shielding. Izv. Atmos. Ocean. Phys. 53, 699–710 (2017). https://doi.org/10.1134/S0001433817070088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817070088

Keywords

Navigation