Skip to main content
Log in

Numerical simulation of wave interactions during sudden stratospheric warming

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Parameterizations of normal atmospheric modes (NAMs) and orographic gravity waves (OGWs) are implemented into the mechanistic general circulation model of the middle and upper atmosphere (MUA). Numerical experiments of sudden stratospheric warming (SSW) events are performed for climatological conditions typical for January and February using meteorological reanalysis data from the UK MET Office in the MUA model averaged over the years 1992–2011 with the easterly phase of quasi-biennial oscillation (QBO). The simulation shows that an increase in the OGW amplitudes occurs at altitudes higher than 30 km in the Northern Hemisphere after SSW. The OGW amplitudes have maximums at altitudes of about 50 km over the North American and European mountain systems before and during SSW, as well as over the Himalayas after SSW. At high latitudes of the Northern Hemisphere, significant (up to 50–70%) variations in the amplitudes of stationary planetary waves (SPWs) are observed during and after the SSW. Westward travelling NAMs have local amplitude maximums not only in the Northern Hemisphere, but also in the Southern Hemisphere, where there are waveguides for the propagation of these modes. Calculated variations of SPW and NAM amplitudes correspond to changes in the mean temperature and wind fields, as well as the Eliassen-Palm flux and atmospheric refractive index for the planetary waves, during SSW. Including OGW thermal and dynamical effects leads to an increase in amplitude (by 30–70%) of almost all SPWs before and during SSW and to a decrease (up to 20–100%) after the SSW at middle and high latitudes of the Northern Hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. McInturff, Stratospheric Warmings: Synoptic, Dynamic and General Circulation Aspects, Ed. by M. McInturff (NASA, Washington, D.C., 1978).

  2. M. E. McIntyre, “How well do we understand the dynamics of stratospheric warmings,” J. Meteorol. Soc. Jpn., 60, 37–64 (1982).

    Article  Google Scholar 

  3. R. Quiroz, “The stratospheric evolution of sudden warmings in 1969–74 determined from measured infrared radiation fields,” J. Atmos. Sci. 32, 211–224 (1975). doi 10.1175/1520-0469(1975)032<0211:TSEOSW>2.0.CO;2

    Article  Google Scholar 

  4. K. Labitzke, “Interannual variability of the winter stratosphere in the northern hemisphere,” Mon. Weather Rev., 105, 762–770 (1977). doi 10.1175/1520- 0493(1977)105<0762:IVOTWS>2.0.CO;2

    Article  Google Scholar 

  5. M. Schoeberl, “Stratospheric warmings—observations and theory,” Rev. Geophys. 16, 521–538 (1978). doi 10.1029/RG016i004p00521

    Article  Google Scholar 

  6. M. P. Baldwin, L. J. Gray, and T. J. Dunkerton, “The quasi-biennial oscillation,” Rev. Geophys. 39 (2), 179–229 (2001).

    Article  Google Scholar 

  7. M. P. Baldwin, M. Dameris, and T. G. Shepherd, “How will the stratosphere affect climate change?,” Science 316, 1576–1577 (2007).

    Article  Google Scholar 

  8. L. Sun and W. A. Robinson, “Downward influence of stratospheric final warming events in an idealized model,” Geophys. Res. Lett. 36, L03819 (2009). doi 10.1029/2008GL036624

    Article  Google Scholar 

  9. D. E. Siskind, S. D. Eckermann, J. P. McCormack, L. Coy, K. W. Hoppel, and N. L. Baker, “Case studies of the mesospheric response to recent minor, major and extended stratospheric warmings,” J. Geophys. Res. 115, D00N03 (2010). doi 10.1029/2010JD014114

    Google Scholar 

  10. J. Kurihara, Y. Ogawa, S. Oyama, S. Nozawa, M. Tsutsumi, C. M. Hall, Y. Tomikawa, and R. Fujii, “Links between a stratospheric sudden warming and thermal structures and dynamics in the high-latitude mesosphere, lower thermosphere, and ionosphere,” Geophys. Res. Lett. 37, L13806 (2010). doi 10.1029/ 2010GL043643

    Article  Google Scholar 

  11. H. Liu, E. Doornbos, M. Yamamoto, and S. T. Ram, “Strong thermospheric cooling during the 2009 major stratosphere warming,” Geophys. Res. Lett. 38, L12102 (2011). doi 10.1029/2011GL047898

    Google Scholar 

  12. T. Yuan, B. Thurairajah, C.- Y. She, A. Chandran, R. L. Collins, and D. A. Krueger, “Wind and temperature response of midlatitude mesopause region to the 2009 sudden stratospheric warming,” J. Geophys. Res. 117, D09114 (2012). doi 10.1029/2011JD017142

    Google Scholar 

  13. L. Sun, W. A. Robinson, and G. Chen, “The predictability of stratospheric warming events: More from the troposphere or the stratosphere?,” J. Atmos. Sci. 69 2, 786–783 (2011). doi 10.1175/JAS-D-11-0144.1

    Google Scholar 

  14. J. R. Albers and T. Birner, “Vortex preconditioning due to planetary and gravity waves prior to sudden strato spheric warmings,” J. Atmos. Sci. 71, 4028–4054 (2014). doi 10.1175/JAS-D-14-0026.1

    Article  Google Scholar 

  15. D. G. Andrews, J. R. Holton, and C. B. Leovy, Middle Atmosphere Dynamics (Academic, New York, 1987).

    Google Scholar 

  16. O. Buhler, Waves and Mean Flows (Cambridge University Press, Cambridge, 2009).

    Book  Google Scholar 

  17. J. R. Holton, “The dynamic meteorology of the stratosphere and mesosphere,” Meteorol. Monogr. 15 37, 1–218 (1975).

    Google Scholar 

  18. C. McLandress, T. G. Shepherd, S. Polavarapu, and S. Beagly, “Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models?,” J. Atmos. Sci. 69, 802–818 (2012).

    Article  Google Scholar 

  19. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975).

    Google Scholar 

  20. C. McLandress, “The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part I: The role of gravity waves and planetary waves,” J. Atmos. Sci. 59 5, 893–906 (2002).

    Article  Google Scholar 

  21. N. M. Gavrilov, A. I. Pogorel’tsev, and C. Jakobi, “Numerical modeling of the effect of latitude-inhomogeneous gravity waves on the circulation of the middle atmosphere,” Izv., Atmos. Ocean. Phys. 41 1, 9–18 (2005).

    Google Scholar 

  22. D. A. Ortland and M. J. Alexander, “Gravity wave influence on the global structure of the diurnal tide in the mesosphere and lower thermosphere,” J. Geophys. Res. 111, A10S10 (2006). doi 10.1029/2005JA011467

    Article  Google Scholar 

  23. S. Watanabe and S. Miyahara, “Quantification of the gravity wave forcing of the migrating diurnal tide in a gravity wave-resolving general circulation model,” J. Geophys. Res. 114, D07110 (2009). doi 10.1029/2008JD011218

    Google Scholar 

  24. J. R. Holton, “The generation of mesospheric planetary waves by zonally asymmetric gravity wave breaking,” J. Atmos. Sci. 41 23, 3427–3430 (1984).

    Article  Google Scholar 

  25. H. G. Mayr, J. G. Mengel, K. L. Chan, and F. T. Huang, “Middle atmosphere dynamics with gravity wave interactions in the numerical spectral model: Tides and planetary waves,” J. Atmos. Sol.-Terr. Phys. 73, 711–730 (2011).

    Article  Google Scholar 

  26. P. Hoffmann, Ch. Jacobi, and C. Borries, “A possible planetary wave coupling between the stratosphere and ionosphere by gravity wave modulation,” J. Atmos. Sol.-Terr. Phys. 75–76, 71–80 (2012). doi 10.1016/j.jastp.2011.07.008

    Article  Google Scholar 

  27. N. M. Gavrilov, A. V. Koval’, A. I. Pogorel’tsev, and E. N. Savenkova, “Numerical simulation of the response of general circulation of the middle atmosphere to spatial inhomogeneities of orographic waves,” Izv., Atmos. Ocean. Phys. 49 4, 367–374 (2013).

    Article  Google Scholar 

  28. N. M. Gavrilov, A. V. Koval, A. I. Pogoreltsev, and E. N. Savenkova, “Numerical modeling influence of inhomogeneous orographic waves on planetary waves in the middle atmosphere,” Adv. Space Res. 51 11, 2145–2154 (2013).

    Article  Google Scholar 

  29. A. I. Pogoreltsev, A. A. Vlasov, K. Froehlich, and Ch. Jacobi, “Planetary waves in coupling the lower and upper atmosphere,” J. Atmos. Sol.-Terr. Phys. 69, 2083–2101 (2007). doi 10.1016/j.jastp.2007.05.014

    Article  Google Scholar 

  30. M. Inoue, M. Takahashi, and H. Naoe, “Relationship between the stratospheric quasi-biennial oscillation and tropospheric circulation in northern autumn,” J. Geophys. Res. 116, D24115 (2011). doi 10.1029/ 2011JD016040

    Article  Google Scholar 

  31. A. I. Pogoreltsev, E. N. Savenkova, N. N. Pertsev, “Sudden stratospheric warmings: The role of normal atmospheric modes,” Geomagn. Aeron. (Engl. Transl.) 52 3, 357–372 (2014).

    Article  Google Scholar 

  32. A. I. Pogoreltsev, “Simulation of planetary waves and their influence on the zonally averaged circulation in the middle atmosphere,” Earth Planets Space, 51 (7–8), 773–784 (1999).

    Article  Google Scholar 

  33. M. S. Longuet-Higgins, “The eigenfunctions of Laplace’s tidal equation over a sphere,” Philos. Trans. R. Soc. London 262, 511–607 (1968).

    Article  Google Scholar 

  34. A. I. Pogoreltsev, A. Yu. Kanukhina, E. V. Suvorova, and E. N. Savenkova, “Variability of planetary waves as a signature of possible climatic changes,” J. Atmos. Sol.-Terr. Phys. 71, 1529–1539 (2009). doi 10.1016/ j.jastp.2009.05.011

    Article  Google Scholar 

  35. N. M. Gavrilov and A. V. Koval, “Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics,” Izv., Atmos. Ocean. Phys. 49 3, 244–251 (2013).

    Article  Google Scholar 

  36. J. F. Scinocca and N. A. McFarlane, “The parameterization of drag induced by stratified flow over anisotrophic orography,” Q. J. R. Meteorol. Soc. 126 568, 2353–2393 (2000).

    Article  Google Scholar 

  37. Ch. Jacobi, K. Fröhlich, and Y. Portnyagin, “Semiempirical model of middle atmosphere wind from the ground to the lower thermosphere,” Adv. Space Res. 43 2, 239–246 (2009).

    Article  Google Scholar 

  38. I. N. Fedulina, A. I. Pogoreltsev, and G. Vaughan, “Seasonal, interannual and short-term variability of planetary waves in UKMO assimilated fields,” Q. J. R. Meteorol. Soc. 130 602, 2445–2458 (2004).

    Article  Google Scholar 

  39. R. E. Dickinson, “Planetary Rossby waves propagating vertically through weak westerly wave guides,” J. Atmos. Sci. 25, 984–1002 (1968).

    Article  Google Scholar 

  40. T. Matsuno, “Vertical propagation of stationary planetary waves in the winter Northern Hemisphere,” J. Atmos. Sci. 27, 871–883 (1970).

    Article  Google Scholar 

  41. N. M. Gavrilov, A. V. Koval, A. I. Pogoreltsev, and E. N. Savenkova, “Simulating influences of QBO phases and orographic gravity wave forcing on planetary waves in the middle atmosphere,” Earth, Planets Space 67, 86 (2015). doi 10.1186/s40623-015-0259-2

    Article  Google Scholar 

  42. D. J. Karoly and B. J. Hoskins, “Three dimensional propagation of planetary waves,” J. Meteorol. Soc. Jpn. 60, 109–123 (1982).

    Article  Google Scholar 

  43. J. R. Albers, J. P. McCormack, and T. R. Nathan, “Stratospheric ozone and the morphology of the northern hemisphere planetary waveguide,” J. Geophys. Res.: Atmos. 118, 563–576 (2013). doi 10.1029/ 2012JD017937

    Article  Google Scholar 

  44. J. A. Rice, Mathematical Statistics and Data Analysis (Duxbury Press, Pacific Grove, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Gavrilov.

Additional information

Original Russian Text © N.M. Gavrilov, A.V. Koval, A.I. Pogoreltsev, E.N. Savenkova, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 6, pp. 674–685.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, N.M., Koval, A.V., Pogoreltsev, A.I. et al. Numerical simulation of wave interactions during sudden stratospheric warming. Izv. Atmos. Ocean. Phys. 53, 592–602 (2017). https://doi.org/10.1134/S0001433817060044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817060044

Keywords

Navigation