Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 5, pp 550–563 | Cite as

Russian climate studies in 2011–2014



The results of Russian climate studies (published in 2011–2014) based on the review prepared for the National Report on Meteorology and Atmospheric Sciences submitted to the 26th General Assembly of the International Union of Geodesy and Geophysics (Prague, June 22–July 2, 2015)1 are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013).Google Scholar
  2. 2.
    IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Ed. by C. B. Field, V. Barros, T. F. Stocker, (Cambridge Univ. Press, Cambridge, 2012).Google Scholar
  3. 3.
    IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ed. by V. R. Barros, C. B. Field, D. J. Dokken, (Cambridge Univ. Press, Cambridge, 2014).Google Scholar
  4. 4.
    IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, (Cambridge Univ. Press, Cambridge, 2014).Google Scholar
  5. 5.
    Second Rosgidromet Assessment Report on Climate Changes and Their Impact in the Territory of the Russian Federation (Rosgidromet, Moscow, 2014) [in Russian].Google Scholar
  6. 6.
    Russian National Report: Meteorology and Atmospheric Sciences: 2011–2014, Ed. by I. I. Mokhov and A. A. Krivolutsky (MAKS Press, Moscow, 2015).Google Scholar
  7. 7.
    I. I. Mokhov, “Russian studies of atmospheric sciences and meteorology in 2011–2014,” Izv., Atmos. Ocean. Phys. 52 (2), 116 (2016).Google Scholar
  8. 8.
    Extreme Natural Phenomena and Catastrophes, Vol. 2, Ed. by V. M. Kotlyakov (IFZ RAN, Moscow, 2011) [in Russian].Google Scholar
  9. 9.
    Meteorological and Geophysical Investigations, Ed. by G. V. Alekseev (Paulsen, Moscow, 2011) [in Russian].Google Scholar
  10. 10.
    Oceanography and Sea Ice, Ed. by I. E. Frolov (Paulsen, Moscow, 2011) [in Russian].Google Scholar
  11. 11.
    Polar Cryosphere and Terrestrial Waters, Ed. by V. M. Kotlyakov (Paulsen, Moscow, 2011) [in Russian].Google Scholar
  12. 12.
    Assessment of Macroeconomic Impacts of Climate Changes in the Territory of the Russian Federation till 2030 and Beyond, Ed. by V. M. Katsov and B. N. Porfir’ev (Rosgidromet, Moscow, 2011) [in Russian].Google Scholar
  13. 13.
    Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere (Arctic Monitoring and Assessment Program, Oslo, 2011).Google Scholar
  14. 14.
    Methods for Assessing Climate Change Effects for Physical and Biological Systems, Ed. by S. M. Semenov (Planeta, Moscow, 2012) [in Russian].Google Scholar
  15. 15.
    Study of Climate Stabilization Possibilities with Novel Technologies (Rosgidromet, Moscow, 2012) [in Russian].Google Scholar
  16. 16.
    Fundamental Problems of the Spatial Development of the Russian Federation: Interdisciplinary Synthesis, Ed. by V. M. Kotlyakov (Media-Press, Moscow, 2013) [in Russian].Google Scholar
  17. 17.
    Regional Environmental Changes in Siberia and Their Global Consequences (Springer, Dordrecht, 2013).Google Scholar
  18. 18.
    The Natural Environment of Russia: Adaptation Processes under Changing Climate and Development of Atomic Power Engineering (IFZ RAN, Moscow, 2014) [in Russian].Google Scholar
  19. 19.
    Turbulence, Dynamics of the Atmosphere and Climate, Ed. by G. S. Golitsyn and I. I. Mokhov (GEOS, Moscow, 2014) [in Russian].Google Scholar
  20. 20.
    Extreme Flooding in the River Amur Basin: Causes, Forecasts, and Recommendations (Rosgidromet, Moscow, 2014) [in Russian].Google Scholar
  21. 21.
    Public Health in Russia: Environmental Impact under Climate Changes (Nauka, Moscow, 2014) [in Russian].Google Scholar
  22. 22.
    Strategic Resources and Conditions for Sustainable Development of the Russian Federation and Its Regions (IG RAN, Moscow, 2014) [in Russian].Google Scholar
  23. 23.
    Models and Methods in the Problem of Atmosphere–Hydrosphere Interaction, Ed. by V. P. Dymnikov, V.N. Lykosov, and E. P. Gordov (ID TGU, Tomsk, 2014) [in Russian].Google Scholar
  24. 24.
    I. I. Mokhov, “Russian studies in atmospheric sciences and meteorology from 2007 to 2010,” Izv., Atmos. Ocean. Phys. 48 (3), 254 (2012).Google Scholar
  25. 25.
    I. I. Mokhov, “Russian studies in meteorology and atmospheric sciences from 2003 to 2006,” Izv., Atmos. Ocean. Phys. 45 (2), 153 (2009).CrossRefGoogle Scholar
  26. 26.
    I. I. Mokhov, “Results of Russian climate studies in 2007–2010,” Atmos. Ocean. Phys. 49 (1), 1–15 (2013).CrossRefGoogle Scholar
  27. 27.
    I. I. Mokhov, “Russian climate studies in 2003–2006,” Izv., Atmos. Ocean. Phys. 45 (2), 169–181 (2009).CrossRefGoogle Scholar
  28. 28.
    I. I. Mokhov, “Climate studies in Russia in 1999–2002,” Izv., Atmos. Ocean. Phys. 40 (2), 127–133 (2004).Google Scholar
  29. 29.
    G. V. Gruza and E. Ya. Ran’kova, Observed and Expected Climate Changes in the Russian Federation: Air Temperature (VNIIGMI-MTsD, Obninsk, 2012) [in Russian].Google Scholar
  30. 30.
    N. A. Dianskii, Simulation of Ocean Circulation and Investigation of Its Response to Short-Term and Long-Term Atmospheric Impacts (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  31. 31.
    Yu. P. Perevedentsev, I. I. Mokhov, A. V. Eliseev, et al., Theory of Atmospheric General Circulation (Kazanskii gosudarstvennyi universitet, Kazan’, 2013) [in Russian].Google Scholar
  32. 32.
    I. I. Mokhov, “Contemporary climate changes in the Arctic,” in Scientific and Technical Problems of Arctic Exploration (Nauka, Moscow, 2014), pp. 82–86 [in Russian].Google Scholar
  33. 33.
    G. V. Alekseev, “The Arctic measurement of global warming,” Led Sneg 54 (2), 53–68 (2014).Google Scholar
  34. 34.
    V. I. Sergienko, L. I. Lobkovskii, I. P. Semiletov, et al., “The degradation of submarine permafrost and the destruction of hydrates on the shelf of East Arctic seas as a potential cause of the “methane catastrophe”: Some results of integrated studies in 2011,” Dokl. Earth Sci. 446 (1), 1132–1136 (2012).CrossRefGoogle Scholar
  35. 35.
    L. I. Lobkovskii, S. L. Nikiforov, N. E. Shakhova, et al., “Mechanisms responsible for degradation of submarine permafrost on the eastern Arctic shelf of Russia 2013,” Dokl. Earth Sci. 449 (1), 280–283 (2013).CrossRefGoogle Scholar
  36. 36.
    N. Shakhova, I. Semiletov, I. Leifer, et al., “Ebullition and storm-induced methane release from the East Siberian Arctic shelf,” Nature Geosci. 7 (1), 64–70 (2014).CrossRefGoogle Scholar
  37. 37.
    O. A. Anisimov, Yu. G. Zaboikina, V. A. Kokorev, and L. N. Yurganov, “Possible causes of methane emission on the shelf of East Arctic seas,” Led Sneg 54 (2), 69–81 (2014).Google Scholar
  38. 38.
    L. G. Anderson, G. Bjork, S. Jutterstrom, et al., “East Siberian Sea, an Arctic region of very high biogeochemical activity,” Biogeosciences 8 (6), 1745–1754 (2011).CrossRefGoogle Scholar
  39. 39.
    O. A. Anisimov and E. L. Zhil’tsova, “Climate change estimates for the regions of Russia in the 20th century and in the beginning of the 21st century based on the observational data,” Russ. Meteorol Hydrol. 37 (6), 421–429 (2012).CrossRefGoogle Scholar
  40. 40.
    O. N. Bulygina, P. Ya. Groisman, V. N. Razuvaev, and N. N. Korshunova, “2011: Changes in snow cover characteristics over Northern Eurasia since 1966,” Environ. Res. Lett. 6, 045204 (2011). doi 10.1088/1748-9326/6/4/045204CrossRefGoogle Scholar
  41. 41.
    T. V. Callaghan, M. Johansson, R. D. Brown, et al., “The changing face of Arctic snow cover: A synthesis of observed and projected changes,” Ambio 40 (Suppl. 1), 17–31 (2011).CrossRefGoogle Scholar
  42. 42.
    T. V. Callaghan, M. Johansson, R. D. Brown, et al., “Multiple effects of changes in Arctic snow cover,” Ambio 40 (Suppl. 1), 32–45 (2011).CrossRefGoogle Scholar
  43. 43.
    I. E. Frolov, Z. M. Gudkovich, V. P. Karklin, and V. M. Smolyanitskii, “Regional peculiarities of climate changes of sea-ice cover in the 20th century and early 21st century and their causes,” Led Sneg 51 (3), 91–104 (2011).Google Scholar
  44. 44.
    L. L. Golubyatnikov and V. S. Kazantsev, “Contribution of tundra lakes in western Siberia to the atmospheric methane budget,” Izv., Atmos. Ocean. Phys. 49 (4), 395–403 (2013).CrossRefGoogle Scholar
  45. 45.
    V. Malkova, A. V. Pavlov, and Yu. B. Skachkov, “Assessment of permafrost stability under current climate changes,” Krios. Zemli 15 (4), 33–36 (2011).Google Scholar
  46. 46.
    V. N. Konishchev, “Permafrost response to climate warming,” Krios. Zemli 15 (4), 15–18 (2011).Google Scholar
  47. 47.
    M. O. Leibman, A. I. Kizyakov, A. V. Plekhanov, and I. D. Streletskaya, “New permafrost feature-deep crater in central Yamal (West Siberia, Russia) as a response to local climate fluctuations,” Geogr. Environ. Sustainability 7 (4), 68–80 (2014).Google Scholar
  48. 48.
    W. N. Meier, G. K. Hovelsrud, B. E. H. van Oort, et al., “Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity,” Rev. Geophys. 51 (2014). doi 10.1002/2013RG000431Google Scholar
  49. 49.
    A. P. Nedashkovskii, “Release and absorption of CO2 during sea-ice formation and melting in the high-latitude Arctic,” Led Sneg 52 (1), 75–84 (2012).Google Scholar
  50. 50.
    V. F. Radionov, E. I. Aleksandrov, N. N. Bryazgin, and A. A. Dement’ev, “Changes in temperature, precipitation, and snow coover in the region of Arctic seas from 1981 to 2010,” Led Sneg 53 (1), 61–68 (2013).Google Scholar
  51. 51.
    L.-H. Smedsrud, I. Esau, R. B. Ingvaldsen, et al., “2014: The role of the Barents Sea in the Arctic climate system,” Rev. Geophys. 51 (3), 415–449 (2014).CrossRefGoogle Scholar
  52. 52.
    N. Tilinina, S. K. Gulev, and D. H. Bromwich, “2014: New view of Arctic cyclone activity from the Arctic system reanalysis,” Geophys. Res. Lett. 41 (5), 1766–1772 (2014).CrossRefGoogle Scholar
  53. 53.
    G. V. Gruza and E. Ya. Ran’kova, “Estimation of probable contribution of global warming to the genesis of abnormally hot summers in the European part of Russia,” Izv., Atmos. Ocean. Phys. 47 (6), 661–664 (2011).CrossRefGoogle Scholar
  54. 54.
    I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).CrossRefGoogle Scholar
  55. 55.
    V. V. Popova, “Summertime warming in the European part of Russia and extreme heat in 2010 as manifestation of large-scale atmospheric circulation trends in the late 20th–early 21st centuries,” Russ. Meteorol. Hydrol. 39 (3), 159–167 (2014).CrossRefGoogle Scholar
  56. 56.
    A. B. Shmakin, M. M. Chernavskaya, and V. V Popova, “The 2010 Great draught on the East-European Plane: Historical analogies and circulation mechanisms,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 6, 59–75 (2013).Google Scholar
  57. 57.
    K. A. Shukurov, I. I. Mokhov, and L. M. Shukurova, “Estimate for radiative forcing of smoke aerosol from 2010 summer fires based on measurements in the Moscow region,” Izv., Atmos. Ocean. Phys. 50 (3), 256–265 (2014).CrossRefGoogle Scholar
  58. 58.
    V. A. Tishchenko, V. M. Khan, R. M. Vil’fand, and E. Roget, “Studying the development of atmospheric processes associated with blocking and quasistationary anticyclones in the Atlantic European sector,” Russ. Meteorol. Hydrol. 38 (7), 444–455 (2013).CrossRefGoogle Scholar
  59. 59.
    V. V. Vinogradova, “Heat waves in the European territory of Russia in early 21st century,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 1, 47–55 (2014).Google Scholar
  60. 60.
    E. A. Cherenkova, “Quantitative estimates of atmospheric draughts in federal districts of the European territory of Russia,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 6, 76–85 (2013).Google Scholar
  61. 61.
    N. A. Vyazilova and A. E. Vyazilova, “On the North Atlantic extreme cyclone activity,” Russ. Meteorol. Hydrol. 37 (11–12), 689–695 (2012).CrossRefGoogle Scholar
  62. 62.
    O. Zolina, C. Simmer, K. Belyaev, et al., “Changes in the duration of European wet and dry spells during the last 60 years,” J. Clim. 26 (6), 2022–2047 (2013).CrossRefGoogle Scholar
  63. 63.
    M. V. Kurgansky, A. V. Chernokulsky, and I. I. Mokhov, “The tornado over Khanty-Mansiysk: An exception or a symptom?,” Russ. Meteorol. Hydrol. 38 (8), 539–546 (2013).CrossRefGoogle Scholar
  64. 64.
    I. I. Mokhov, E. M. Dobryshman, and M. E. Makarova, “Transformation of tropical cyclones into extratropical: The tendencies of 1970–2012,” Dokl. Earth Sci. 454 (1), 59–63 (2014).CrossRefGoogle Scholar
  65. 65.
    O. Anisimov, V. Kokorev, and Y. Zhiltsova, “Temporal and spatial patterns of modern climatic warming: Case study of Northern Eurasia,” Clim. Change 118 (3–4), 871–883 (2013).CrossRefGoogle Scholar
  66. 66.
    A. V. Chernokulsky, O. N. Bulygina, and I. I. Mokhov, “Recent variations of cloudiness over Russia from surface daytime observations,” Environ. Res. Lett. 6, 035202 (2011).CrossRefGoogle Scholar
  67. 67.
    E. A. Samukova, E. V. Gorbatenko, and A. E. Erokhina, “Long-term variations of solar radiation in Europe,” Russ. Meteorol. Hydrol. 39 (8), 514–520 (2014).CrossRefGoogle Scholar
  68. 68.
    A. A. Sarafanov, A. S. Falina, and A. V. Sokov, “Long-term changes in the characteristics and circulation of deep waters in the northern North Atlantic: The role of regional and external factors,” Dokl. Earth Sci. 450 (2), 643–646 (2013).CrossRefGoogle Scholar
  69. 69.
    P. Ya. Groisman, E. G. Bogdanova, V. A. Alekseev, et al., “Influence of snowfall measurement error on the amount of atmospheric precipitation and their trends over northern Eurasia,” Led Sneg 54 (2), 29–43 (2014).Google Scholar
  70. 70.
    V. V. Popova, “Contribution of snow storage to changes in the flow of large rivers of the Arctic Ocean basin during current warming,” Led Sneg 51 (3), 69–78 (2011).Google Scholar
  71. 71.
    V. V. Popova and I. A. Polyakova, “Change in the time of stable snow cover destruction in north Eurasia in 1936–2008: Impact of global warming and the role of large-scale atmospheric circulations,” Led Sneg 53 (2), 29–39 (2013).Google Scholar
  72. 72.
    G. V. Gruza and E. Ya. Ran’kova, “Dynamic normals of surface air temperature,” Russ. Meteorol. Hydrol. 37 (11–12), 717–727 (2012).CrossRefGoogle Scholar
  73. 73.
    M. G. Akperov and I. I. Mokhov, “Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime,” Izv., Atmos. Ocean. Phys. 49 (2), 113–120 (2013).CrossRefGoogle Scholar
  74. 74.
    A. V. Borzenkova and A. B. Shmakin, “Current changes in climate characteristics of the heating period in Russia and their correlation with atmospheric circulation,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 4, 59–69 (2013).Google Scholar
  75. 75.
    V. I. Bekoryukov, V. N. Glazkov, and V. V. Fedorov, “Analysis of time series of global mean values of thermodynamic and circulation parameters of the atmosphere and concentrations of ozone and water vapor,” Izv., Atmos. Ocean. Phys. 47 (1), 67–76 (2011).CrossRefGoogle Scholar
  76. 76.
    S. K. Gulev, M. Latif, N. Keenlyside, et al., “North Atlantic ocean control on surface heat flux on multidecadal timescales,” Nature 499 (7459), 464 (2013). doi doi 10.1038/nature12268CrossRefGoogle Scholar
  77. 77.
    G. N. Panin and N. A. Diansky, “On the correlation between oscillations of the Caspian Sea level and the North Atlantic climate,” Izv., Atmos. Ocean. Phys. 50 (3), 266–277 (2014).CrossRefGoogle Scholar
  78. 78.
    Yu. P. Perevedentsev and K. M. Shantalinskii, “Estimation of contemporary observed variations of air temperature and wind speed in the troposphere of the Northern Hemisphere,” Russ. Meteorol. Hydrol. 39 (10), 650–659 (2014).CrossRefGoogle Scholar
  79. 79.
    A. V. Chernokulsky and I. I. Mokhov, “Climatology of total cloudiness in the Arctic: An intercomparison of observations and reanalyses,” Adv. Meteorol. 2012, id 542093 (2012). doi 10.1155/2012/542093Google Scholar
  80. 80.
    N. E. Chubarova, E. I. Nezval’, I. B. Belikov, et al., “Climatic and environmental characteristics of Moscow megalopolis according to the data of the Moscow State University Meteorological Observatory over 60 years,” Russ. Meteorol. Hydrol. 39 (9), 602–613 (2014).CrossRefGoogle Scholar
  81. 81.
    A. V. Khokhlova and A. A. Timofeev, “Long-term variations of wind regime in the free atmosphere over the European territory of Russia,” Russ. Meteorol. Hydrol. 36 (4), 229–238 (2011).CrossRefGoogle Scholar
  82. 82.
    E. A. Romankevich and A. A. Vetrov, “Masses of carbon in the Earth’s hydrosphere,” Geochem. Int. 51 (6), 431–455 (2013).CrossRefGoogle Scholar
  83. 83.
    V. V. Adushkin and V. P. Kudryavtsev, “Estimating the global flux of methane into the atmosphere and its seasonal variations,” Izv., Atmos. Ocean. Phys. 49 (2), 128–136 (2013).CrossRefGoogle Scholar
  84. 84.
    A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over Northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).CrossRefGoogle Scholar
  85. 85.
    N. K. Kononova and L. V. Khmelevskaya, “Longterm oscillations of commencement dates and durations of circulation seasons in nontropical latitudes of the northern hemisphere,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 3, 43–62 (2011).Google Scholar
  86. 86.
    V. M. Kotlyakov, M. Yu. Moskalevskii, and L. N. Vasil’ev, “Changes in the mass balance of the Antarctic ice sheet over 50 years,” Dokl. Earth Sci. 438 (1), 686–689 (2011).CrossRefGoogle Scholar
  87. 87.
    A. N. Krenke, E. A. Cherenkova, and M. M. Chernavskaya, “Snowpack stability on the territory of Russia in the context of climate change,” Led Sneg 52 (1), 29–37 (2012).Google Scholar
  88. 88.
    R. I. Nigmatulin, “Notes on global climate and ocean currents,” Izv., Atmos. Ocean. Phys. 48 (1), 30–36 (2012).CrossRefGoogle Scholar
  89. 89.
    N. A. Vyazilova, “Cyclone activity and circulation oscillations in the North Atlantic,” Russ. Meteorol. Hydrol. 37 (7), 431–437 (2012).CrossRefGoogle Scholar
  90. 90.
    N. A. Vyazilova and A. E. Vyazilova, “Storm cyclones in the North Atlantic,” Russ. Meteorol. Hydrol. 39 (6), 371–377 (2014).CrossRefGoogle Scholar
  91. 91.
    N. S. Sidorenkov and K. A. Sumerova, “Temperature fluctuation beats as a reason for the anomalously hot summer of 2010 in the European part of Russia,” Russ. Meteorol. Hydrol. 37 (6), 411–420 (2012).CrossRefGoogle Scholar
  92. 92.
    A. A. Vetrov and E. A. Romankevich, “Primary production and fluxes of organic carbon to the seabed in the Russian Arctic seas as a response to the recent warming,” Oceanology (Engl. Transl.) 51 (2), 255–266 (2011).Google Scholar
  93. 93.
    G. M. Vinogradova and N. N. Zavalishin, “Anticyclogenesis of surface pressure field in winter season, blocking, and variability of the Earth angular velocity,” Russ. Meteorol. Hydrol. 36 (11), 731–736 (2011).CrossRefGoogle Scholar
  94. 94.
    G. A. Zherebtsov and V. A. Kovalenko, “Solar activity effect on weather–climatic characteristics of the troposphere,” Soln.-Zemnaya Fiz., 21, 98–106 (2012).Google Scholar
  95. 95.
    V. I. Byshev, V. G. Neiman, Yu. A. Romanov, and I. V. Serykh, “El Niño as a consequence of the global oscillation in the dynamics of the Earth’s climatic system,” Dokl. Earth Sci. 446 (1), 1089–1094 (2012).CrossRefGoogle Scholar
  96. 96.
    V. I. Byshev, V. G. Neiman, V. I. Ponomarev, et al., “The influence of global atmospheric oscillation on formation of climate anomalies in the Russian Far East,” Dokl. Earth Sci. 458 (1), 1116–1120 (2014).CrossRefGoogle Scholar
  97. 97.
    V. Privalsky and S. Muzylev, “An experimental stochastic model of the El Niño–Southern Oscillation system at climatic time scales,” Univers. J. Geosci. 1 (1), 28–36 (2013).Google Scholar
  98. 98.
    I. I. Mokhov and A. V. Timazhev, “Climatic anomalies in Eurasia from El Niño/La Niña effects,” Dokl. Earth Sci. 453 (1), 1141–1144 (2013).CrossRefGoogle Scholar
  99. 99.
    E. S. Nesterov, The North-Atlantic Oscillation: The atmosphere and Ocean (Triada, Moscow, 2013) [in Russian].Google Scholar
  100. 100.
    I. I. Mokhov, D. A. Smirnov, P. I. Nakonechny, S. S. Kozlenko, and J. Kurths, “Relationship between El-Niño/Southern Oscillation and the Indian Monsoon,” Izv., Atmos. Ocean. Phys. 48 (1), 47–56 (2012).CrossRefGoogle Scholar
  101. 101.
    D. A. Smirnov and I. I. Mokhov, “Estimation of interaction between climatic processes: Effect of sparse sample of analyzed data series,” Izv., Atmos. Ocean. Phys. 49 (5), 485–493 (2013).CrossRefGoogle Scholar
  102. 102.
    I. I. Mokhov, D. A. Smirnov, P. V. Nakonechny, S. S. Kozlenko, E. P. Seleznev, and J. Kurths, “Alternating mutual influence of El-Niño/Southern Oscillation and Indian Monsoon,” Geophys. Res. Lett. 38 (8), L00F04 (2011). doi 10.1029/2010GL045932CrossRefGoogle Scholar
  103. 103.
    Klimenko V.V. “Why is global warming slowing down?,” Dokl. Earth Sci. 440 (2), 1419–1422 (2011).CrossRefGoogle Scholar
  104. 104.
    I. I. Mokhov, D. A. Smirnov, and A. A. Karpenko, “Assessments of the relationship of changes of the global surface air temperature with different natural and anthropogenic factors based on observations,” Dokl. Earth Sci. 443 (1), 381–387 (2012).CrossRefGoogle Scholar
  105. 105.
    N. F. Elansky, O. V. Lavrova, I. I. Mokhov, and A. A. Rakin, “Heat island structure over Russian towns based on mobile laboratory observations,” Dokl. Earth Sci. 443 (1), 420–425 (2012).CrossRefGoogle Scholar
  106. 106.
    G. G. Aleksandrov, I. N. Belova, and A. S. Ginzburg, “Anthropogenic heat flows in the capital agglomerations of Russia and China,” Dokl. Earth Sci. 457 (1), 850–854 (2014).CrossRefGoogle Scholar
  107. 107.
    A. S. Ginzburg, I. N. Belova, and N. V. Raspletina, “Anthropogenic heat fluxes in urban agglomerations,” Dokl. Earth Sci. 439 (1), 1006–1009 (2011).CrossRefGoogle Scholar
  108. 108.
    I. I. Mokhov and A. I. Semenov, “Nonlinear temperature changes in the atmospheric mesopause region of the atmosphere against the background of global climate changes, 1960–2012,” Dokl. Earth Sci. 456 (2), 741–744 (2014).CrossRefGoogle Scholar
  109. 109.
    G. L. Manney, M. L. Santee, M. Rex, et al., “Unprecedented Arctic ozone loss in 2011,” Nature 478, 469–475 (2011).CrossRefGoogle Scholar
  110. 110.
    V. I. Danilov-Danil’yan and A. N. Gel’fan, “The extraordinary flood in the Amur river basin,” Herald Russ. Acad. Sci. 84 (5), 335–343 (2014).CrossRefGoogle Scholar
  111. 111.
    N. V. Vakulenko, V. M. Kotlyakov, and D. M. Sonechkin, “Increase in the global climate variability from about 400 ka BP until present,” Dokl. Earth Sci. 456 (2), 745–748 (2014).CrossRefGoogle Scholar
  112. 112.
    T. V. Khodzher, L. P. Golobokova, E. Yu. Osipov, et al., “Evidence of the 19th-century volcanic eruptions of Tambora and Krakatau according to chemical and electron-microscopy data on snow–firn cores for the Vostok station area, Antarctica,” Led Sneg 51 (1), 105–113 (2011).Google Scholar
  113. 113.
    E. Y. Osipov, T. V. Khodzher, L. P. Golobokova, et al., “High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica,” Cryosphere 8 (3), 843–851 (2014).CrossRefGoogle Scholar
  114. 114.
    L. Bazin, A. Landais, B. Lemieux-Dudon, et al., “An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka,” Clim. Past 9 (4), 1715–1731 (2013).CrossRefGoogle Scholar
  115. 115.
    V. A. Bezverkhnii, “Correlation between 41000-year rhythms in variations in the inclination of Earth, violent volcanic eruptions, and temperature of deep ocean waters,” Izv., Atmos. Ocean. Phys. 50 (6), 657–663 (2014).CrossRefGoogle Scholar
  116. 116.
    V. A. Bezverkhnii, “Manifestation of characteristic periods of oscillations of the Earth’s orbital parameters in the paleoclimatic data,” Dokl. Earth Sci. 451 (1), 779–783 (2013).CrossRefGoogle Scholar
  117. 117.
    D. Dahl-Jensen, M. R. Albert, A. Aldahan, et al., “Eemian interglacial reconstructed from a Greenland folded ice core,” Nature 493 (7433), 489–494 (2013).CrossRefGoogle Scholar
  118. 118.
    A. A. Ekaykin, A. V. Kozachek, V. Y. Lipenkov, and Y. A. Shibaev, “Multiple climate shifts in the Southern Hemisphere over the past three centuries based on central Antarctic snow pits and core studies,” Ann. Glaciol. 55 (66), 259–266 (2014).CrossRefGoogle Scholar
  119. 119.
    G. L. Leichenkov, “Environmental and climate changes in Antarctica in the Geological Past,” Led Sneg, 54 (4), 107–116 (2014).Google Scholar
  120. 120.
    V. Y. Lipenkov, D. Raynaud, M. F. Loutre, and P. Duval, “On the potential of coupling air content and O2/N2 from trapped air for establishing an ice core chronology tuned on local insolation,” Quat. Sci. Rev. 30 (23–24), 3280–3289 (2011).CrossRefGoogle Scholar
  121. 121.
    F. Parrenin, J. R. Petit, V. Masson-Delmotte, et al., “Volcanic synchronisation between the EPICA Dome C and Vostok ice cores (Antarctica) 0–145 kyr BP,” Clim. Past 8 (3), 1031–1045 (2012).CrossRefGoogle Scholar
  122. 122.
    J. Vandenberghe, H. Renssen, D. M. Roche, et al., “Eurasian permafrost instability constrained by reduced sea-ice cover,” Quat. Sci. Rev. 34, 16–23 (2012).CrossRefGoogle Scholar
  123. 123.
    J. Vandenberghe, H. M. French, A. Gorbunov, et al., “The last permafrost maximum (LPM) map of the Northern Hemisphere: Permafrost extent and mean annual air temperatures, 25–17 ka BP,” Boreas 43 (3), 652–666 (2014).CrossRefGoogle Scholar
  124. 124.
    A. A. Velichko and O. K. Borisova, “Paleoanalogues of global warming in the 21st century,” Dokl. Earth Sci. 438 (1) 681–685 (2011).CrossRefGoogle Scholar
  125. 125.
    H. Fischer, J. Severinghaus, E. Brook, et al., “Where to find 1.5 million yr old ice for the IPICS Oldest-Ice ice core,” Clim. Past 9 (6), 2489–2505 (2013).CrossRefGoogle Scholar
  126. 126.
    M. Eby, A. J. Weaver, K. Alexander, et al., “Historical and idealized climate model experiments: An EMIC intercomparison,” Clim. Past 9 (3), 1111–1140 (2013).CrossRefGoogle Scholar
  127. 127.
    G. A. Alexandrov, “Explaining the seasonal cycle of the globally averaged CO2 with a carbon-cycle model,” Earth Syst. Dyn. 5 (2), 345–354 (2014).CrossRefGoogle Scholar
  128. 128.
    A. V. Eliseev, P. F. Demchenko, M. M. Arzhanov, and I. I. Mokhov, “Transient hysteresis of near-surface permafrost response to external forcing,” Clim. Dyn. 42, 1203–1215 (2014).CrossRefGoogle Scholar
  129. 129.
    M. Ghil, P. Yiou, S. Hallegate, et al., “Extreme events: Dynamics, statistics and prediction,” Nonlinear Processes Geophys. 18, 295–350 (2011).CrossRefGoogle Scholar
  130. 130.
    A. S. Ginzburg, “Regional air temperature maxima and the possibility of their simple energy-balance estimates,” Izv., Atmos. Ocean. Phys. 47 (6), 665–671 (2011).CrossRefGoogle Scholar
  131. 131.
    G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Phenomena. Methods, Instruments and Results (Krasand, Moscow, 2013) [in Russian].Google Scholar
  132. 132.
    A. V. Kislov and P. I. Konstantinov, “Detailed spatial modeling of temperature in Moscow,” Russ. Meteorol. Hydrol. 36 (5), 300–306 (2011).CrossRefGoogle Scholar
  133. 133.
    I. M. Shkolnik and S. V. Efimov, “Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: Added value and uncertainties,” Environ. Res. Lett. 8 (4), AN045007 (2013). doi 10.1088/ 1748-9326/8/4/045007CrossRefGoogle Scholar
  134. 134.
    E. M. Volodin, “The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4,” Environ. Res. Lett. 8 (3), AN035038 (2013). doi 10.1088/1748-9326/8/3/035038CrossRefGoogle Scholar
  135. 135.
    R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).CrossRefGoogle Scholar
  136. 136.
    J. R. Melton, R. Wania, E. L. Hodson, et al., “Present state of global wetland extent and wetland methane modelling: Conclusions from a model intercomparison project (WETCHIMP),” Biogeosciences 10 (2), 753–788 (2013).CrossRefGoogle Scholar
  137. 137.
    R. Wania, J. R. Melton, E. L. Hodson, et al., “Present state of global wetland extent and wetland methane modelling: Methodology of a model intercomparison project (WETCHIMP),” Geosci. Model Dev. 6 (3), 617–641 (2013).CrossRefGoogle Scholar
  138. 138.
    L. L. Golubyatnikov, I. I. Mokhov, and A. V. Eliseev, “Nitrogen cycle in the Earth climatic system and its modeling,” Izv., Atmos. Ocean. Phys. 49 (3), 229–243 (2013).CrossRefGoogle Scholar
  139. 139.
    D. J. Nicolsky, V. E. Romanovsky, N. N. Romanovskii, et al., “Modeling sub-sea permafrost in the East Siberian Arctic shelf: The Laptev Sea region,” J. Geophys. Res. 117, 429–436 (2012).CrossRefGoogle Scholar
  140. 140.
    V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykosov, “Numerical modeling of methane emissions from lakes in the permafrost zone,” Izv., Atmos. Ocean. Phys. 47 (2), 252–264 (2011).CrossRefGoogle Scholar
  141. 141.
    A. V. Eliseev, I. I. Mokhov, and A. V. Chernokulsky, “Influence of ground and peat fires on CO2 emissions into the atmosphere,” Dokl. Earth Sci. 459 (2), 1565–1569 (2014).CrossRefGoogle Scholar
  142. 142.
    A. Yu. Yurova and E. M. Volodin, “Coupled simulation of climate and vegetation dynamics,” Izv., Atmos. Ocean. Phys. 47 (5), 531–539 (2011).CrossRefGoogle Scholar
  143. 143.
    M. D. Ananicheva, A. N. Krenke, A. E. Semenov, and D. V. Turkov, “Dependence of snow accumulation in Antarctica on sea-ice propagation area,” Led Sneg 51 (4), 47–56 (2011).Google Scholar
  144. 144.
    A. V. Baidin and V. P. Meleshko, “Response of the atmosphere at high and middle latitudes to the reduction of sea ice area and the rise of sea surface temperature,” Russ. Meteorol. Hydrol. 39 (6), 361–370 (2014).CrossRefGoogle Scholar
  145. 145.
    A. V. Dzyuba, A. V. Eliseev, and I. I. Mokhov, “Estimates of changes in the rate of methane sink from the atmosphere under climate warming,” Izv., Atmos. Ocean. Phys. 48 (3), 332–342 (2012).CrossRefGoogle Scholar
  146. 146.
    J. Ba, N. S. Keenlyside, M. Latif, et al., “A multimodel comparison of Atlantic multidecadal variability,” Clim. Dyn. 43 (9–10), 2333–2348 (2014).CrossRefGoogle Scholar
  147. 147.
    M. M. Arzhanov and I. I. Mokhov, “Model assessments of organic carbon amounts released from longterm permafrost under scenarios of global warming in the 21st century,” Dokl. Earth Sci. 455 (1), 346–349 (2014).CrossRefGoogle Scholar
  148. 148.
    M. M. Arzhanov, I. I. Mokhov, “Temperature trends in the permafrost of the Northern Hemisphere: Comparison of model calculations with observations,” Dokl. Earth Sci. 449 (1), 319–323 (2013).CrossRefGoogle Scholar
  149. 149.
    S. N. Denisov, M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Sensitivity of methane emissions from Western Siberian wetlands to climate changes: Multimodel estimations,” Opt. Atmos. Okeana 24 (4), 319–322 (2011).CrossRefGoogle Scholar
  150. 150.
    A. V. Eliseev, I. I. Mokhov, and A. V. Chernokulsky, “An ensemble approach to simulate CO2 emissions from natural fires,” Biogeosciences 11 (12), 3205–3223 (2014).CrossRefGoogle Scholar
  151. 151.
    A. V. Eliseev, P. F. Demchenko, M. M. Arzhanov, and I. I. Mokhov, “Hysteresis of the surface permafrost area dependence on the global temperature,” Dokl. Earth Sci. 444 (2), 725–728 (2012).CrossRefGoogle Scholar
  152. 152.
    F. M. Hoffman, J. T. Randerson, V. K. Arora, et al., “Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models,” J. Geophys. Res.: Biogeosci. 119 (2), 141–162 (2014).CrossRefGoogle Scholar
  153. 153.
    I. A. Gorchakova and I. I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 496–503 (2012).CrossRefGoogle Scholar
  154. 154.
    A. V. Gusev and N. A. Diansky, “Numerical simulation of the World Ocean circulation and its climatic variability for 1948–2007 using the INMOM,” Izv., Atmos. Ocean. Phys. 50 (1), 1–12 (2014).CrossRefGoogle Scholar
  155. 155.
    N. G. Iakovlev “On the simulation of temperature and salinity fields in the Arctic Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 86–101 (2012).CrossRefGoogle Scholar
  156. 156.
    L. Jin, B. Schneider, W. Park, et al., “The spatial–temporal patterns of Asian summer monsoon precipitation in response to Holocene insolation change: A model–data synthesis,” Quat. Sci. Rev 85, 47–62 (2014).CrossRefGoogle Scholar
  157. 157.
    M. Johnson, A. Proshutinsky, Y. Aksenov, et al., “Evaluation of Arctic sea ice thickness simulated by Arctic Ocean model intercomparison project models,” J. Geophys. Res.: Oceans 117, ANC00D13(2012). doi 10.1029/2011JC007257CrossRefGoogle Scholar
  158. 158.
    I. L. Karol’, A. A. Kiselev, and V. A. Frol’kis, “Indices of the factors that form climate changes of different scales,” Izv., Atmos. Ocean. Phys. 47 (4), 415–429 (2011).CrossRefGoogle Scholar
  159. 159.
    I. L. Karol’, A. A. Kiselev, and V. A. Frol’kis, “Radiation indices of climate-forming factors and their estimates under anthropogenic climate changes,” Russ. Meteorol. Hydrol. 37 (5), 298–3068 (2012).CrossRefGoogle Scholar
  160. 160.
    V. V. Malakhova and E. N. Golubeva, “Modeling of the dynamics subsea permafrost in the East Siberian Arctic shelf under the past and the future climate changes,” Proc. SPIE 9292 AN9292D (2014). doi 10.1117/12.2075137Google Scholar
  161. 161.
    U. Neu, M. G. Akperov, R. Benestad, et al., “IMILAST—A community effort to intercompare cyclone detection and tracking algorithms: Quantifying method-related uncertainties,” Bull. Am. Meteorol. Soc. 94 (4), 529–547 (2013).CrossRefGoogle Scholar
  162. 162.
    S. M. Semenov and I. O. Popov, “Comparative estimates of influence of changes in carbon dioxide, methane, nitrous oxide, and water vapor concentrations on radiation-equilibrium temperature of Earth’s surface,” Russ. Meteorol. Hydrol. 36 (8), 520–526 (2011).CrossRefGoogle Scholar
  163. 163.
    A. M. Tarko and V. V. Usatyuk, “Simulation of the global biogeochemical carbon cycle with account for its seasonal dynamics and analysis of variations in atmospheric CO2 concentrations,” Dokl. Earth Sci. 448 (2), 258–261 (2013).CrossRefGoogle Scholar
  164. 164.
    M. A. Tolstykh, N. A. Diansky, A. V. Gusev, et al., “Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere–ocean model,” Izv., Atmos. Ocean. Phys. 50 (2), 111–121 (2014).CrossRefGoogle Scholar
  165. 165.
    E. M. Volodin, “The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4,” Environ. Res. Lett. 8 (3), AN035038 (2013). doi 10.1088/1748-9326/8/3/035038CrossRefGoogle Scholar
  166. 166.
    E. M. Volodin, “Possible reasons for low climatemodel sensitivity to increased carbon dioxide concentrations,” Izv., Atmos. Ocean. Phys. 50 (4), 350–355 (2014).CrossRefGoogle Scholar
  167. 167.
    Dymnikov V.P., Lykosov V.N., Volodin E.M. “Modeling climate and its changes: Current problems,” Herald Russ. Acad. Scie. 82 (2), 111–119 (2012).CrossRefGoogle Scholar
  168. 168.
    M. Akperov, I. I. Mokhov, A. Rinke, et al., “Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations,” Theor. Appl. Climatol. 122 (1), 85–96 (2015).CrossRefGoogle Scholar
  169. 169.
    K. Arpe, S. A. G. Leroy, F. Wetterhall, et al., “Prediction of the Caspian Sea level using ECMWF seasonal forecasts and reanalysis,” Theor. Appl. Climatol. 117, 41–60 (2014).CrossRefGoogle Scholar
  170. 170.
    M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Impact of climate changes over the extratropical land on permafrost dynamics under RCP scenarios in the 21st century as simulated by the IAP RAS climate model,” Russ. Meteorol. Hydrol. 38 (7), 456–464 (2013).CrossRefGoogle Scholar
  171. 171.
    M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “A global climate model based, Bayesian climate projection for northern extra-tropical land areas,” Glob. Planet. Change 86–87, 57–65 (2012).CrossRefGoogle Scholar
  172. 172.
    M. Yu. Bardin, “Scenary forecasts of air temperature variations for the regions of the Russian Federation up to 2030 using the empirical stochastic climate models,” Russ. Meteorol. Hydrol. 36 (4), 217–228 (2011).CrossRefGoogle Scholar
  173. 173.
    A. V. Eliseev and I. I. Mokhov, “Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios,” Adv. Atmos. Sci. 28 (5), 1215–1232 (2011).CrossRefGoogle Scholar
  174. 174.
    E. A. Cherenkova and A. N. Zolotokrylin, “Model estimates of moistening conditions on the Russian plains by the middle of the 21st century,” Russ. Meteorol. Hydrol. 37 (11), 704–710 (2012).CrossRefGoogle Scholar
  175. 175.
    S. N. Denisov, M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Assessment of the response of subaqueous methane hydrate deposits to possible climate change in the twenty-first century,” Dokl. Earth Sci. 441 (1), 1706–1709 (2011).CrossRefGoogle Scholar
  176. 176.
    S. N. Denisov, M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Assessments of stability of methane hydrates in the Lake Baikal system,” Dokl. Earth Sci. 449 (2), 346–348 (2013).CrossRefGoogle Scholar
  177. 177.
    S. N. Denisov, A. V. Eliseev, and I. I. Mokhov, “Climate change in IAP RAS global model taking account of interaction with methane cycle under anthropogenic scenarios of RCP family,” Russ. Meteorol. Hydrol. 38 (11), 741–749 (2013).CrossRefGoogle Scholar
  178. 178.
    A. V. Eliseev, “Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values,” Izv., Atmos. Ocean. Phys. 47 (2), 131–153 (2011).CrossRefGoogle Scholar
  179. 179.
    A. V. Eliseev and I. I. Mokhov, “Effect of including land-use driven radiative forcing of the surface albedo of land on climate response in the 16th–21st centuries,” Izv., Atmos. Ocean. Phys. 47 (1), 15–30 (2011).CrossRefGoogle Scholar
  180. 180.
    A. V. Eliseev, I. I. Mokhov, and K. E. Muryshev, “Estimates of climate changes in the 20th–21st centuries based on the version of the IAP RAS climate model including the model of general ocean circulation,” Russ. Meteorol. Hydrol. 36 (2), 73–81 (2011).CrossRefGoogle Scholar
  181. 181.
    V. Ch. Khon, I. I. Mokhov, and F. A. Pogarskii, “Estimating changes of wind-wave activity in the Arctic Ocean in the 21st century using the regional climate model,” Dokl. Earth Sci. 452 (2), 1027–1029 (2013).CrossRefGoogle Scholar
  182. 182.
    V. Khon, I. I. Mokhov, F. Pogarskiy, et al., “Wave heights in the 21st century Arctic Ocean simulated with a regional climate model,” Geophys. Res. Lett. 41 (8), 2956–2961 (2014).CrossRefGoogle Scholar
  183. 183.
    V. C. Khon, W. Park, M. Latif, I. I. Mokhov, and B. Schneider, “Tropical circulation and hydrological cycle response to orbital forcing,” Geophys. Res. Lett. 39 (15), L15708 (2012).CrossRefGoogle Scholar
  184. 184.
    E. A. Mareev and E. M. Volodin, “Variation of the global electric circuit and ionospheric potential in a general circulation model,” Geophys. Res. Lett. 41 (24), 9009–9016 (2014).CrossRefGoogle Scholar
  185. 185.
    S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya “Simulating indirect effects that thunderstorm activity has on atmospheric temperature,” Izv., Atmos. Ocean. Phys. 49 (5), 504–518 (2013).CrossRefGoogle Scholar
  186. 186.
    D. V. Kulyamin and V. P. Dymnikov, “A three-dimensional model of general thermospheric circulation,” Russ. J. Numer. Anal. Math. Modell. 28 (4), 353–380 (2013).CrossRefGoogle Scholar
  187. 187.
    D. V. Kulyamin and V. P. Dymnikov, “The atmospheric general circulation model with a hybrid vertical coordinate,” Russ. J. Numer. Anal. Math. Modell. 29 (6), 355–373 (2014).CrossRefGoogle Scholar
  188. 188.
    D. V. Kulyamin and V. P. Dymnikov, “Modeling the general circulation of the troposphere–stratosphere–mesosphere incorporating the ionospheric D-layer,” Geliogeofiz. Issled., No. 10, 5–44 (2014).Google Scholar
  189. 189.
    I. I. Mokhov, “Hydrological anomalies and tendencies of change in the basin of the Amur River under global warming,” Dokl. Earth Sci. 455 (2), 459–462 (2014).CrossRefGoogle Scholar
  190. 190.
    A. V. Kislov, A. V. Panin, and P. A. Toropov, “Present-day variations and paleodynamics of the Caspian Sea level as a standard for climate modeling data verification,” Russ. Meteorol. Hydrol. 39 (5), 328–334 (2014).CrossRefGoogle Scholar
  191. 191.
    V. Ch. Khon and I. I. Mokhov, “The hydrological regime of large river basins of North Eurasia in the XX–XXI centuries,” Water Resour. 39 (1), 1–10 (2012).CrossRefGoogle Scholar
  192. 192.
    V. I. Kuzin, G. A. Platov, E. N. Golubeva, and V. V. Malakhova, “Certain results of numerical simulation of processes in the Arctic Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 102–119 (2012).CrossRefGoogle Scholar
  193. 193.
    J. Lehmann, D. Coumou, K. Frieler, et al., “Future changes in extratropical storm tracks and baroclinicity under climate change,” Environ. Res. Lett. 9 (8), 084002 (2014).CrossRefGoogle Scholar
  194. 194.
    I. I. Mokhov, V. A. Semenov, V. Ch. Khon, and F. A. Pogarskii, “Climate change trends in high latitudes of the Northern Hemisphere: Diagnostics and simulation,” Led Sneg 53 (2), 53–62 (2013).Google Scholar
  195. 195.
    I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in atmospheric blocking characteristics within Euro–Atlantic region and Northern Hemisphere as a whole in the 21st century from model simulations using RCP anthropogenic scenarios,” Global Planet. Change 122, 265–270 (2014).CrossRefGoogle Scholar
  196. 196.
    P. A. Morozova, “Influence of the Scandinavian ice on the climate conditions of east plain European evidenced from the numerical simulation project PMIP II,” Led Sneg 54 (1), 113–124 (2014).Google Scholar
  197. 197.
    K. Zickfeld, M. Eby, A. J. Weaver, et al., “Long-term climate change commitment and reversibility: An EMIC intercomparison,” J. Clim. 26 (16), 5782–5809 (2013).CrossRefGoogle Scholar
  198. 198.
    S. N. Moshonkin, G. V. Alekseev, N. A. Dianskii, et al., “Simulation of climatic variations in the Atlantic water inflow into the Arctic Ocean and freshwater content in the Beaufort Gyre,” Izv., Atmos. Ocean. Phys. 47 (5), 678–692 (2011).CrossRefGoogle Scholar
  199. 199.
    E. D. Nadezhina, E. K. Mol’kentin, A. A. Kiselev, et al., “Investigation of parameterization effect on the methane flux estimation from the regional climate model of the main geophysical observatory for the territory of Russia,” Russ. Meteorol. Hydrol. 36 (6), 371–382 (2011).CrossRefGoogle Scholar
  200. 200.
    O. O. Rybak, J. J. Fürst, and P. Huybrechts, “Mathematical modeling of ice flow in the northwestern Greenland and interpretation of deep drilling data at the NEEM camp,” Led Sneg 53 (1), 16–25 (2013).Google Scholar
  201. 201.
    O. O. Rybak and P. Huybrechts, “Mathematical modeling of ice flow in Queen Maud Land, Antarctica, and its application to the late quaternary climatic paleoreconstruction,” Led Sneg 52 (3), 5–16 (2012).Google Scholar
  202. 202.
    O. O. Rybak and P. Huybrechts, “The Greenland Ice sheet at the peak of warming during the previous Interglacial,” Led Sneg 54 (2), 91–101 (2014).Google Scholar
  203. 203.
    V. A. Semenov, “Climate-related changes in hazardous and adverse hydrological events in the Russian rivers,” Russ. Meteorol. Hydrol. 36 (2), 124–129 (2011).CrossRefGoogle Scholar
  204. 204.
    V. A. Semenov, “Role of sea ice in formation of wintertime Arctic temperature anomalies,” Izv., Atmos. Ocean. Phys. 50 (4), 343–349 (2014).CrossRefGoogle Scholar
  205. 205.
    V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades,” Izv., Atmos. Ocean. Phys. 48 (4), 355–372 (2012).CrossRefGoogle Scholar
  206. 206.
    V. A. Semenov, E. A. Shelekhova, I. I. Mokhov, V. V. Zuev, and K. P. Koltermann, “Role of the Atlantic Multidecadal Oscillation in formation of seasonal air temperature anomalies in the Northern Hemisphere according to model calculations,” Atmos. Oceanic Opt. 27 (3), 253–261 (2014).CrossRefGoogle Scholar
  207. 207.
    J. E. Overland, M. Y. Wang, N. A. Bond, et al., “Considerations in the selection of global climate models for regional climate projections: The Arctic as a case study,” J. Clim 24 (6), 1583–1597 (2011).CrossRefGoogle Scholar
  208. 208.
    V. A. Semenov, I. I. Mokhov, and A. B. Polonskii, “Modeling the impact of natural long-term variability in the North Atlantic on the formation of climate anomaly in the Northern Hemisphere,” Morsk. Gidrofiz. Zh., No. 4, 14–27 (2014).Google Scholar
  209. 209.
    I. I. Mokhov, M. G. Akperov, M. A. Prokofyeva, A. A. Timazhev, A. R. Lupo, and H. Le Treut, “Blockings in the Northern Hemisphere and Euro–Atlantic region: Estimates of changes from reanalysis data and model simulations,” Dokl. Earth Sci. 449 (2), 430–433 (2013).CrossRefGoogle Scholar
  210. 210.
    I. I. Mokhov and A. V. Eliseev, “Modeling of global climate variations in the 20th–23rd centuries with new RCP scenarios of anthropogenic forcing,” Dokl. Earth Sci. 443 (2), 532–536 (2012).CrossRefGoogle Scholar
  211. 211.
    B. G. Sherstyukov and A. B. Sherstyukov, “Assessment of increase in forest fire risk in Russia till the late 21st century based on scenario experiments with fifthgeneration climate models,” Russ. Meteorol. Hydrol. 39 (5), 292–301 (2014).CrossRefGoogle Scholar
  212. 212.
    I. M. Shkol’nik, V. P. Meleshko, S. V. Efimov, and E. N. Stafeeva, “Changes in climate extremes on the territory of Siberia by the middle of the 21st century: An ensemble forecast based on the MGO regional climate model,” Russ. Meteorol. Hydrol. 37 (2), 71–84 (2012).CrossRefGoogle Scholar
  213. 213.
    I. M. Shkol’nik, E. D. Nadezhina, T. V. Pavlova, et al., “Modeling the regional features of the seasonal thaw layer in the Siberian permafrost area,” Krios. Zemli 16 (2), 52–59 (2012).Google Scholar
  214. 214.
    P. V. Sporyshev, V. M. Kattsov, and V. A. Matyugin, “A correspondence between the model ensemble simulations and observations of temperature changes on the territory of Russia,” Russ. Meteorol. Hydrol. 37 (1), 1–11 (2012).CrossRefGoogle Scholar
  215. 215.
    J. C. Stroeve, V. Kattsov, A. Barrett, et al., “Trends in Arctic Sea ice extent from CMIP5, CMIP3 and observations,” Geophys. Res. Lett. 39, L16502 (2012). doi 10.1029/2012GL052676CrossRefGoogle Scholar
  216. 216.
    U. Ulbrich, G. C. Leckebusch, J. Grieger, et al., “Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?,” Meteorol. Z. 22 (1), 61–68 (2013).CrossRefGoogle Scholar
  217. 217.
    E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system,” Izv., Atmos. Ocean. Phys. 49 (4), 347–366 (2013).CrossRefGoogle Scholar
  218. 218.
    V. Zubov, E. Rozanov, T. Egorova, et al., “Role of external factors in the evolution of the ozone layer and stratospheric circulation in 21st century,” Atmos. Chem. Phys. 13 (9), 4697–4706 (2013).CrossRefGoogle Scholar
  219. 219.
    V. A. Zubov, E. V. Rozanov, I. V. Rozanova, et al., “Simulation of changes in global ozone and atmospheric dynamics in the 21st century with the chemistry–climate model SOCOL,” Izv., Atmos. Ocean. Phys. 47 (3), 301–312 (2011).CrossRefGoogle Scholar
  220. 220.
    O. A. Anisimov and V. A. Kokorev, “Optimal choice of hydrodynamic models to assess the climate change impact on the cryosphere,” Led Sneg 53 (1), 83–92 (2013).Google Scholar
  221. 221.
    O. A. Anisimov, E. L. Zhil’tsova, and S. A. Reneva, “Estimation of critical levels of climate change influence on the natural terrestrial ecosystems on the territory of Russia,” Russ. Meteorol. Hydrol. 36 (11), 723–730 (2011).CrossRefGoogle Scholar
  222. 222.
    I. I. Mokhov and A. V. Malyshkin, “Analytical estimate of the critical global-warming level for the Antarctic ice sheet mass gain-to-loss transition,” Dokl. Earth Sci. 436 (1), 155–158 (2011).CrossRefGoogle Scholar
  223. 223.
    J. E. Vonk, L. Sanchez-Garcia, B. E. van Dongen, et al., “Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia,” Nature 489 (7414), 137–140 (2012).CrossRefGoogle Scholar
  224. 224.
    V. A. Grabar, M. L. Gitarskii, T. M. Dmitrieva, et al., “Assessment of greenhouse gases emission from civil aviation in Russia,” Russ. Meteorol. Hydrol. 36 (1), 18–24 (2011).CrossRefGoogle Scholar
  225. 225.
    M. M. Arzhanov, A. V. Eliseev, V. V. Klimenko, I. I. Mokhov, and A. G. Tereshin, “Estimating climate changes in the Northern Hemisphere in the 21st century under alternative scenarios of anthropogenic forcing,” Izv., Atmos. Ocean. Phys. 48 (6), 573–584 (2012).CrossRefGoogle Scholar
  226. 226.
    A. I. Danilov, G. V. Alekseev and A. V. Klepikov, “Climate change consequences for marine activity in the Arctic,” Led Sneg 54 (3), 91–99 (2014).Google Scholar
  227. 227.
    V. M. Kattsov and B. N. Porfir’ev, Assessment of Macroeconomic Consequences of Climate Change (Rosgidromet, Moscow, 2011) [in Russian].Google Scholar
  228. 228.
    V. M. Kattsov and B. N. Porfir’ev, “Climate changes in the Arctic: Consequences for the environment and economics,” Arkt.: Ekol. Ekon., No. 2, 66–79 (2012).Google Scholar
  229. 229.
    Costs and Benefits of Low-Carbon Economics and Transformation of Society in Russia. Prospects before and after 2050, Ed. by I. A. Bashmakov (TsENEF, Moscow, 2014) [in Russian].Google Scholar
  230. 230.
    V. V. Klimenko, “Influence of climatic and geographical conditions on the level of energy consumption,” Dokl. Earth Sci. 443 (1), 392–395 (2012).CrossRefGoogle Scholar
  231. 231.
    V. V. Klimenko and A. G. Tereshin, “Unconventional gas and transformation of the global carbon balance,” Dokl. Earth Sci. 453 (1), 1113–1116 (2013).CrossRefGoogle Scholar
  232. 232.
    E. I. Khlebnikova, I. A. Sall’, and I. M. Shkol’nik, “Regional climate changes as the factors of impact on the objects of construction and infrastructure,” Russ. Meteorol. Hydrol. 37 (11–12), 735–745 (2012).CrossRefGoogle Scholar
  233. 233.
    D. G. Zamolodchikov, V. I. Grabovsky, and G. N. Kraev, “A twenty year retrospective on the forest carbon dynamics in Russia,” Contemp. Probl. Ecol. 4 (7), 706–715 (2011).CrossRefGoogle Scholar
  234. 234.
    D. G. Zamolodchikov, V. I. Grabovsky, G. N. Korovin, et al., “Carbon budget of managed forests in the Russian Federation in 1990–2050: Post-evaluation and forecasting,” Russ. Meteorol. Hydrol. 38 (10), 715–722 (2013).CrossRefGoogle Scholar
  235. 235.
    N. E. Uvarova, V. V. Kuzovkin, S. G. Paramonov, and M. L. Gytarsky, “The improvement of greenhouse gas inventory as a tool for reduction emission uncertainties for operations with oil in the Russian Federation,” Clim. Change 124, 535–544 (2014).CrossRefGoogle Scholar
  236. 236.
    Yu. A. Izrael, E. M. Volodin, S. V. Kostrykin, et al., “The ability of stratospheric climate engineering in stabilizing global mean temperatures and an assessment of possible side effects,” Atmos. Sci. Lett. 15 (2), 140–148 (2014).CrossRefGoogle Scholar
  237. 237.
    E. M. Volodin, S. V. Kostrykin, and A. G. Ryaboshapko, “Simulation of climate change induced by injection of sulfur compounds into the stratosphere,” Izv., Atmos. Ocean. Phys. 47 (4), 430–438 (2011).CrossRefGoogle Scholar
  238. 238.
    Yu. A. Izrael, E. M. Volodin, S. V. Kostrykin, et al., “Possibility of geoengineering stabilization of global temperature in the 21st century using the stratospheric aerosol and estimation of potential negative effects,” Russ. Meteorol. Hydrol. 38 (6), 371–381 (2013).CrossRefGoogle Scholar
  239. 239.
    V. P. Meleshko, V. M. Kattsov, and I. L. Karol, “An answer to the paper of A. G. Ryaboshapko “On the taboo on researching in the field of global climate geoengineering”,” Russ. Meteorol. Hydrol. 36 (8), 566–568 (2011).CrossRefGoogle Scholar
  240. 240.
    I. L. Karol’, A. A. Kiselev, E. L. Genikhovich, and S. S. Chicherin, “Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation,” Izv., Atmos. Ocean. Phys. 49 (5), 461–478 (2013).CrossRefGoogle Scholar
  241. 241.
    A. A. Romanovskaya, V. N. Korotkov, N. S. Smirnov, et al., “Land use contribution to the anthropogenic emission of greenhouse gases in Russia in 2000–2011,” Russ. Meteorol. Hydrol. 39 (3), 137–145 (2014).CrossRefGoogle Scholar
  242. 242.
    A. Z. Shvidenko, D. G. Shchepashchenko, E. A. Vaganov, et al., “Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget,” Dokl. Earth Sci. 441 (2), 1678–1682 (2011).CrossRefGoogle Scholar
  243. 243.
    B. A. Revich and M. A. Podolnaya, “Thawing of permafrost may disturb historic cattle burial grounds in East Siberia,” Global Health Action 4, 8482 (2011). doi 10.3402/gha.v4i0.8482CrossRefGoogle Scholar
  244. 244.
    B. A. Revich, N. Tokarevich, and A. J. Parkinson, “Climate change and zoonotic infections in the Russian Arctic,” Int. J. Circumpolar Health 71, 18792 (2012). doi 10.3402/ijch.v71i0.18792CrossRefGoogle Scholar
  245. 245.
    D. G. Zamolodchikov, V. I. Grabovsky, P. P. Shulyak, and O. V. Chestnykh, “The impacts of fires and clearcuts on the carbon balance of Russian forests,” Contemp. Probl. Ecol. 6 (7), 714–726 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations