Skip to main content
Log in

Impact of non-Gaussian statistics of atmospheric variables on extreme intramonth anomalies

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The analysis of asymmetry of probability distribution functions (PDF) is carried out for key atmospheric variables using the JRA-55 reanalysis data in the troposphere of the Northern Hemisphere for 1976–2014. The nonzero asymmetry of the PDF indicates the deviation of the PDF from the normal distribution. The analysis was carried out for two time-scale intervals: synoptic variability (SV) of 2–7 days and low-frequency variability (LV) of 9–30 days. Statistically significant deviations from the normal probability distribution occur in the regions of the most frequent formation of atmospheric baroclinic perturbations, i.e., over the western parts of the oceans in midlatitudes and downstream in the atmosphere. In the SV time-scale interval, a negative asymmetry of the vertical velocity is revealed in isobaric coordinates for the entire thickness of the free troposphere, which agrees with the overall dominance of cyclonic anomalies in this interval of time scales. In the LV interval, the asymmetry of this variable in the entire free troposphere is positive, which indicates the dominance of anticyclonic anomalies at these time scales. For the zonal velocity, temperature, and geopotential, the asymmetry sign of the PDF for variability with time scales of 2–7 days is different for the upper and lower free troposphere. The asymmetry of the PDF for atmospheric variables indicates the important role of the intermode interaction in the formation of baroclinic perturbations. The corresponding deviations of synoptic variability from the normal distribution, which is found in the upper troposphere of the subpolar and polar latitudes, can be related to the interaction of these perturbations with the winter polar vortex. These deviations of PDF from the normal distribution substantially increase the probability of the appearance of large (in absolute value) anomalies as compared to the case of the Gaussian PDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Charney, “The dynamics of long waves in a baroclinic westerly current,” J. Meteorol. 4 (5), 135–162 (1947).

    Article  Google Scholar 

  2. E. T. Eady, “Long waves and cyclone waves,” Tellus 1 (3), 33–52 (1949).

    Article  Google Scholar 

  3. M. V. Kalashnik, “Resonant and quasi-resonant excitation of baroclinic waves in the Eady model,” Izv., Atmos. Ocean. Phys. 51 (6), 576–584 (2015).

    Article  Google Scholar 

  4. E. B. Gledzer, F. V. Dolzhanskii, and A. M. Obukhov, Hydrodynamic-Type Systems and Their Application (Nauka, Moscow, 1981) [In Russian].

  5. B. F. Farrell, “The initial growth of disturbances in a baroclinic flow,” J. Atmos. Sci. 39 (8), 1663–1686 (1982).

    Article  Google Scholar 

  6. A. S. Monin, Introduction to Climate Theory (Gidrometeoizdat, Leningrad, 1982) [In Russian].

    Google Scholar 

  7. Akperov M.G., Bardin M.Yu., Volodin E.M. i dr. “Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model,” Izv., Atmos. Ocean. Phys. 43 (6), 705–712 (2007).

  8. G. S. Golitsyn, I. I. Mokhov, M. G. Akperov, et al., “Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: An instrument for the determination of global climate variations,” Dokl. Earth Sci. 413 (2), 324–326 (2007).

    Article  Google Scholar 

  9. V. Petoukhov, A. V. Eliseev, R. Klein, et al., “On statistics of the free-troposphere synoptic component: An evaluation of skewnesses and mixed third-order moments contribution to the synoptic dynamics and fluxes of heat and humidity,” Tellus A 60 (1), 11–31 (2008).

    Article  Google Scholar 

  10. M. L. Blackmon, J. M. Wallace, N.-C. Lau, et al., “An observational study of the Northern Hemisphere wintertime circulation,” J. Atmos. Sci. 34 (7), 1040–1053 (1977).

    Article  Google Scholar 

  11. M. L. Blackmon, Y-H. Lee, and J. M. Wallace, “Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales,” J. Atmos. Sci. 41 (6), 961–980 (1984).

    Article  Google Scholar 

  12. M. Perron and P. Sura, “Climatology of non-Gaussian atmospheric statistics,” J. Clim. 26 (3), 1063–1083 (2013).

    Article  Google Scholar 

  13. I. I. Mokhov, M. G. Akperov, and M. A. Prokof’eva, “Cyclone–anticyclone asymmetry in the atmosphere of the extratropical latitudes of the Northern Hemisphere,” Dokl. Earth Sci. 462 (2), 653–656 (2015).

    Article  Google Scholar 

  14. M. Holzer, “Asymmetric geopotential height fluctuations from symmetric winds,” J. Atmos. Sci. 53 (10), 1361–1379 (1996).

    Article  Google Scholar 

  15. S. Kobayashi, Y. Ota, Y. Harada, et al., “The JRA-55 reanalysis: General specifications and basic characteristics,” J. Meteorol. Soc. Jpn. 93 (1), 5–48 (2015).

    Article  Google Scholar 

  16. M. Christoph, U. Ulbrich, and U. Haak, “Faster determination of the intraseasonal variability of storm tracks using Murakami’s recursive filter,” Mon. Weather Rev. 123 (2), 578–581 (1995).

    Article  Google Scholar 

  17. M. Murakami, “Large-scale aspects of deep convective activity over the GATE Area,” Mon. Weather Rev. 107 (8), 994–1013 (1979).

    Article  Google Scholar 

  18. B. J. Hoskins and K. I. Hodges, “New perspectives on the Northern Hemisphere winter storm tracks,” J. Atmos. Sci. 59 (6), 1041–1061 (2002).

    Article  Google Scholar 

  19. I. I. Mokhov and V. K. Petukhov, “Blockings and the tendencies toward their variation,” Dokl. Earth Sci. 357 (9), 1386–1388 (1997).

    Google Scholar 

  20. A. R. Lupo, R. J. Oglesby, and I. I. Mokhov, “Climatological features of blocking anticyclones: A study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres,” Clim. Dyn. 13 (3), 181–195 (1997).

    Article  Google Scholar 

  21. D. Barriopedro, R. Garcia-Herrera, A. R. Lupo, et al., “A climatology of Northern Hemisphere blocking,” J. Clim. 19 (5), 1042–1063 (2006).

    Article  Google Scholar 

  22. A. R. Lupo, I. I. Mokhov, S. I. Dostoglou, et al., “Assessment of the impact of the planetary scale on the decay of blocking and the use of phase diagrams and enstrophy as a diagnostic,” Izv., Atmos. Ocean. Phys. 43 (1), 45–51 (2007).

    Article  Google Scholar 

  23. I. I. Mokhov, M. G. Akperov, M. A. Prokofyeva, et al., “Blockings in the Northern Hemisphere and Euro–Atlantic region: Estimates of changes from reanalysis data and model simulations,” Dokl. Earth Sci. 449 (2), 430–433 (2013).

    Article  Google Scholar 

  24. I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in Atmospheric Blocking Characteristics within Euro-Atlantic Region and Northern Hemisphere As a Whole in the 21st Century from Model Simulations Using RCP Anthropogenic Scenarios,” Glob. Planet. Change 122, 265–270 (2014).

    Article  Google Scholar 

  25. I. I. Mokhov and A. V. Timazhev, “Model assessment of possible changes of atmospheric blockings in the Northern Hemisphere under RCP scenarios of anthropogenic forcings,” Dokl. Earth Sci. 460 (1), 63–67 (2015).

    Article  Google Scholar 

  26. V. Ventura, C. J. Paciorek, and J. S. Risbey, “Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data,” J. Clim. 17 (22), 4343–4356 (2004).

    Article  Google Scholar 

  27. M. Kendall, and A. Stuart, The Advanced Theory of Statistics, Vol. 1: Distribution Theory (Charles Griffin, London, 1963; Nauka, Moscow, 1966).

    Google Scholar 

  28. B. J. Hoskins, I. N. James, and G. H. White, “The shape, propagation and mean-flow interaction of largescale weather systems,” J. Atmos. Sci. 40 (7), 1595–1612 (1983).

    Article  Google Scholar 

  29. J. G. Charney and J. G. DeVore, “Multiple flow equilibria in the atmosphere and blocking,” J. Atmos. Sci. 36 (7), 1205–1216 (1979).

    Article  Google Scholar 

  30. R. Buizza and T. N. Palmer, “The singular-vector structure of the atmospheric global circulation,” J. Atmos. Sci. 52 (9), 1434–1456 (1995).

    Article  Google Scholar 

  31. J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, et al., “The climatology of blocking anticyclones for the Northern and Southern hemispheres: Block intensity as a diagnostic,” J. Clim. 15 (21), 3459–3473 (2002).

    Article  Google Scholar 

  32. A. H. Monahan, “The probability distribution of sea surface wind speeds. Part I: Theory and SeaWinds Observations,” J. Clim. 19 (4), 497–520 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Loginov.

Additional information

Original Russian Text © S.V. Loginov, A.V. Eliseev, I.I. Mokhov, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 3, pp. 307–317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginov, S.V., Eliseev, A.V. & Mokhov, I.I. Impact of non-Gaussian statistics of atmospheric variables on extreme intramonth anomalies. Izv. Atmos. Ocean. Phys. 53, 269–278 (2017). https://doi.org/10.1134/S0001433817030070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817030070

Keywords

Navigation