Skip to main content
Log in

Structure of a modulated narrow light beam in seawater: Monte Carlo simulation

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Dispersion properties of photon density waves propagating in seawater from a unidirectional point source have been studied using the Monte Carlo technique. It is shown that the spatial distribution of irradiance of the photon density waves at high modulation frequencies is significantly different from that of the stationary light field. Principal dispersion effects predicted earlier in the approximation solutions of the nonstationary radiation transfer equation are confirmed. An increase in the wave decrement and a decrease in the transversal cross section of the initially narrow beam at the modulation frequency with the increase of the modulation frequency are demonstrated. Frequency dependencies of phase and group velocities of photon density waves are calculated. It is shown that seawater possesses anomalous dispersion in a wide frequency range with respect to these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Blättner, H. G. Horak, D. G. Collins, and M. B. Wells, “Monte Carlo studies of the sky radiation at twilight,” Appl. Opt. 13 (3), 534–547 (1974).

    Article  Google Scholar 

  2. F. Chilton, D. D. Jones, and W. K. Talley, “Imaging properties of light scattered by the sea,” J. Opt. Soc. Am. 59 (8), 891–898 (1969).

    Article  Google Scholar 

  3. K. I. Gjerstad, J. J. Stamnes, B. Hamre, J. K. Lotsberg, B. Yan, and K. Stamnes, “Monte Carlo and discreteordinate simulations of irradiances in the coupled atmosphere–ocean system,” Appl. Opt. 42 (15), 2609–2622 (2003).

    Article  Google Scholar 

  4. B. Light, G. Maykut, and T. Grenfell, “A two-dimensional Monte Carlo model of radiative transfer in sea ice,” J. Geophys. Res. 108 (C7), 3219 (2003).

    Article  Google Scholar 

  5. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47 (2), 131–146 (1995).

    Article  Google Scholar 

  6. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10 (3), 159–170 (2002).

    Article  Google Scholar 

  7. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Express 18 (21), 21714–21724 (2010).

    Article  Google Scholar 

  8. A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2 (9), 2461–2469 (2011).

    Article  Google Scholar 

  9. A. G. Luchinin and V. A. Savel’ev, “Propagation of a sinusoidally modulated light beam through a scattering medium,” Radiophys. Quantum Electron. 12 (2), 205–211 (1969).

    Article  Google Scholar 

  10. A. G. Luchinin and V. A. Savel’ev, “The asymptotic behavior of a sinusoidally modulated radiation field in an isotropically scattering medium,” Radiophys. Quantum Electron. 13 (12), 1378–1381 (1970).

    Article  Google Scholar 

  11. I. L. Katsev, “On a deep mode of the propagation of a sinusoidally modulated light beam in a turbid medium,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 8 (2), 212–216 (1971).

    Google Scholar 

  12. A. G. Luchinin, “The spatial structure of a sinusoidally modulated light beam in a medium having strongly anisotropic scattering,” Radiophys. Quantum Electron. 14 (12), 1507–1509 (1971).

    Article  Google Scholar 

  13. A. G. Luchinin, “Spatial spectrum of a sinusoidally modulated light beam in a medium with anisotropic scattering,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 10 (12), 1312–1317 (1974).

    Google Scholar 

  14. L. B. Gordeev, A. G. Luchinin, and Yu. B. Shchegol’kov, “Experimental studies of the structure of a narrow sinusoidally modulated light beam in a medium with model anisotropic scattering,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 1 (1), 86–89 (1975).

    Google Scholar 

  15. V. S. Remizovich, D. B. Rogozkin, and M. I. Ryazanov, “Propagation of a narrow modulated light beam in a scattering medium with fluctuations of the photon pathlengths in multiple scattering,” Radiophys. Quantum Electron. 25 (8) 639–645 (1982).

    Article  Google Scholar 

  16. L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude-modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).

    Article  Google Scholar 

  17. E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. J. Mullen, “Simulating the performance of in-water modulated vision systems with estimation of the image quality characteristics,” in Proceedings of the International Conference on Current Problems in Optics of Natural Waters (ONW'2005) (Rozhdestvensky Optical Society, St. Petersburg, 2005), pp. 312–320.

    Google Scholar 

  18. L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374–7383 (2007).

    Article  Google Scholar 

  19. B. Cochenour, L. Mullen, and J. Muth, “Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging,” Appl. Opt. 50, 6168–6178 (2011).

    Article  Google Scholar 

  20. A. G. Luchinin, “Concept of an oceanological lidar with maximal 3D resolution,” in Proceedinds of the VI International Conference “Current Problems in Optics of Natural Waters” (Nauka, St. Petersburg, 2011), pp. 37–43.

    Google Scholar 

  21. A. G. Luchinin, “Theory of underwater LIDAR with a complex modulated illumination beam,” Izv., Atmos. Ocean. Phys. 48 (6), 663–671 (2012).

    Article  Google Scholar 

  22. A. G. Luchinin, “On underwater imaging systems with complex-modulated illumination beams,” Fundam. Prikl. Gidrofiz. 5 (4), 5–17 (2012).

    Google Scholar 

  23. A. G. Luchinin and L. S. Dolin, “Model of an underwater imaging system with a complexly modulated illumination beam,” Izv., Atmos. Ocean. Phys. 50 (4), 411–419 (2014).

    Article  Google Scholar 

  24. A. G. Luchinin and L. S. Dolin, “Application of complex- modulated waves of photon density for instrumental vision in turbid media,” Dokl. Phys. 59 (4), 170–172 (2014).

    Article  Google Scholar 

  25. A. G. Luchinin, “Principles of designing an “ideal” system of imaging through a rough water surface," Radiophys. Quantum Electron. 57 (4), 251–259 (2014).

    Article  Google Scholar 

  26. L. S. Dolin, “Self-similar approximation in the theory of strongly anisotropic multiple light scattering,” Dokl. Akad. Nauk SSSR 260 (6), 1344–1347 (1981).

    Google Scholar 

  27. L. S. Dolin and I. M. Levin, Handbook on the Theory of Underwater Imaging (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  28. A. G. Luchinin and L. S. Dolin, “On dispersive properties of the photon-density waves in an anisotropic scattering medium,” Radiophys. Quantum Electron. 59 (2), 145–152 (2016).

    Article  Google Scholar 

  29. E. A. Sergeeva, M. Yu. Kirillin, and A. V. Priezzhev, “Propagation of a femtosecond pulse in a scattering medium: Theoretical analysis and numerical simulation,” Quantum Electron. 36 (11), 1023–1031 (2006).

    Article  Google Scholar 

  30. M. Yu. Kirillin, A. V. Bykov, A. V. Priezzhev, and R. Myllylä, “Application of time gating in the measurement of glucose level in a three-layer biotissue model by using ultrashort laser pulses,” Quantum Electron. 38 (5), 486–490 (2008).

    Article  Google Scholar 

  31. Yu. E. Ochakovskii, “On the comparison between measured and calculated indicatrices,” Tr. Inst. Okeanol. im. P. P. Shirshova, Akad. Nauk SSSR 77, 125–130 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Luchinin.

Additional information

Original Russian Text © A.G. Luchinin, M.Yu. Kirillin, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 2, pp. 276–284.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchinin, A.G., Kirillin, M.Y. Structure of a modulated narrow light beam in seawater: Monte Carlo simulation. Izv. Atmos. Ocean. Phys. 53, 242–249 (2017). https://doi.org/10.1134/S0001433817020086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817020086

Keywords

Navigation