Abstract
Dispersion properties of photon density waves propagating in seawater from a unidirectional point source have been studied using the Monte Carlo technique. It is shown that the spatial distribution of irradiance of the photon density waves at high modulation frequencies is significantly different from that of the stationary light field. Principal dispersion effects predicted earlier in the approximation solutions of the nonstationary radiation transfer equation are confirmed. An increase in the wave decrement and a decrease in the transversal cross section of the initially narrow beam at the modulation frequency with the increase of the modulation frequency are demonstrated. Frequency dependencies of phase and group velocities of photon density waves are calculated. It is shown that seawater possesses anomalous dispersion in a wide frequency range with respect to these waves.
Similar content being viewed by others
References
W. G. Blättner, H. G. Horak, D. G. Collins, and M. B. Wells, “Monte Carlo studies of the sky radiation at twilight,” Appl. Opt. 13 (3), 534–547 (1974).
F. Chilton, D. D. Jones, and W. K. Talley, “Imaging properties of light scattered by the sea,” J. Opt. Soc. Am. 59 (8), 891–898 (1969).
K. I. Gjerstad, J. J. Stamnes, B. Hamre, J. K. Lotsberg, B. Yan, and K. Stamnes, “Monte Carlo and discreteordinate simulations of irradiances in the coupled atmosphere–ocean system,” Appl. Opt. 42 (15), 2609–2622 (2003).
B. Light, G. Maykut, and T. Grenfell, “A two-dimensional Monte Carlo model of radiative transfer in sea ice,” J. Geophys. Res. 108 (C7), 3219 (2003).
L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47 (2), 131–146 (1995).
D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10 (3), 159–170 (2002).
M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Express 18 (21), 21714–21724 (2010).
A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2 (9), 2461–2469 (2011).
A. G. Luchinin and V. A. Savel’ev, “Propagation of a sinusoidally modulated light beam through a scattering medium,” Radiophys. Quantum Electron. 12 (2), 205–211 (1969).
A. G. Luchinin and V. A. Savel’ev, “The asymptotic behavior of a sinusoidally modulated radiation field in an isotropically scattering medium,” Radiophys. Quantum Electron. 13 (12), 1378–1381 (1970).
I. L. Katsev, “On a deep mode of the propagation of a sinusoidally modulated light beam in a turbid medium,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 8 (2), 212–216 (1971).
A. G. Luchinin, “The spatial structure of a sinusoidally modulated light beam in a medium having strongly anisotropic scattering,” Radiophys. Quantum Electron. 14 (12), 1507–1509 (1971).
A. G. Luchinin, “Spatial spectrum of a sinusoidally modulated light beam in a medium with anisotropic scattering,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 10 (12), 1312–1317 (1974).
L. B. Gordeev, A. G. Luchinin, and Yu. B. Shchegol’kov, “Experimental studies of the structure of a narrow sinusoidally modulated light beam in a medium with model anisotropic scattering,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 1 (1), 86–89 (1975).
V. S. Remizovich, D. B. Rogozkin, and M. I. Ryazanov, “Propagation of a narrow modulated light beam in a scattering medium with fluctuations of the photon pathlengths in multiple scattering,” Radiophys. Quantum Electron. 25 (8) 639–645 (1982).
L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude-modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).
E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. J. Mullen, “Simulating the performance of in-water modulated vision systems with estimation of the image quality characteristics,” in Proceedings of the International Conference on Current Problems in Optics of Natural Waters (ONW'2005) (Rozhdestvensky Optical Society, St. Petersburg, 2005), pp. 312–320.
L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374–7383 (2007).
B. Cochenour, L. Mullen, and J. Muth, “Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging,” Appl. Opt. 50, 6168–6178 (2011).
A. G. Luchinin, “Concept of an oceanological lidar with maximal 3D resolution,” in Proceedinds of the VI International Conference “Current Problems in Optics of Natural Waters” (Nauka, St. Petersburg, 2011), pp. 37–43.
A. G. Luchinin, “Theory of underwater LIDAR with a complex modulated illumination beam,” Izv., Atmos. Ocean. Phys. 48 (6), 663–671 (2012).
A. G. Luchinin, “On underwater imaging systems with complex-modulated illumination beams,” Fundam. Prikl. Gidrofiz. 5 (4), 5–17 (2012).
A. G. Luchinin and L. S. Dolin, “Model of an underwater imaging system with a complexly modulated illumination beam,” Izv., Atmos. Ocean. Phys. 50 (4), 411–419 (2014).
A. G. Luchinin and L. S. Dolin, “Application of complex- modulated waves of photon density for instrumental vision in turbid media,” Dokl. Phys. 59 (4), 170–172 (2014).
A. G. Luchinin, “Principles of designing an “ideal” system of imaging through a rough water surface," Radiophys. Quantum Electron. 57 (4), 251–259 (2014).
L. S. Dolin, “Self-similar approximation in the theory of strongly anisotropic multiple light scattering,” Dokl. Akad. Nauk SSSR 260 (6), 1344–1347 (1981).
L. S. Dolin and I. M. Levin, Handbook on the Theory of Underwater Imaging (Gidrometeoizdat, Leningrad, 1991) [in Russian].
A. G. Luchinin and L. S. Dolin, “On dispersive properties of the photon-density waves in an anisotropic scattering medium,” Radiophys. Quantum Electron. 59 (2), 145–152 (2016).
E. A. Sergeeva, M. Yu. Kirillin, and A. V. Priezzhev, “Propagation of a femtosecond pulse in a scattering medium: Theoretical analysis and numerical simulation,” Quantum Electron. 36 (11), 1023–1031 (2006).
M. Yu. Kirillin, A. V. Bykov, A. V. Priezzhev, and R. Myllylä, “Application of time gating in the measurement of glucose level in a three-layer biotissue model by using ultrashort laser pulses,” Quantum Electron. 38 (5), 486–490 (2008).
Yu. E. Ochakovskii, “On the comparison between measured and calculated indicatrices,” Tr. Inst. Okeanol. im. P. P. Shirshova, Akad. Nauk SSSR 77, 125–130 (1965).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.G. Luchinin, M.Yu. Kirillin, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 2, pp. 276–284.
Rights and permissions
About this article
Cite this article
Luchinin, A.G., Kirillin, M.Y. Structure of a modulated narrow light beam in seawater: Monte Carlo simulation. Izv. Atmos. Ocean. Phys. 53, 242–249 (2017). https://doi.org/10.1134/S0001433817020086
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001433817020086