Skip to main content
Log in

Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Different physical mechanisms which cause interannual and interdecadal temperature anomalies in the upper mixed layer (UML) of the North Atlantic are investigated using the data of ORA-S3 reanalysis for the period of 1959–2011. It is shown that the annual mean heat budget in UML is mainly caused by the balance between advective heat transfer and horizontal turbulent mixing (estimated as a residual term in the equation of thermal balance). The local UML temperature change and contribution from the heat fluxes on the lower boundary of the UML to the heat budget of the upper layer are insignificant for the time scale under consideration. The contribution of the heat fluxes on the upper UML boundary to the low-frequency variability of the upper layer temperature in the whole North Atlantic area is substantially less than 30%. Areas like the northwestern part of the Northern Subtropical Anticyclonic Gyre (NSAG), where their contribution exceeds 30–60%, are exceptions. The typical time scales of advective heat transfer variability are revealed. In the NSAG area, an interannual variability associated with the North Atlantic Oscillation dominates, while in the North Atlantic subpolar gyre, an interdecadal variability of advective transfers with periods of more than 30 years prevails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bjerknes, Atlantic Air–Sea Interaction, Adv. Geophys., vol. 10 (Academic, New York, 1964). doi 10.1016/ S0065-2687(085)60005-9

    Google Scholar 

  2. A. B. Polonskii, Rol’ okeana v izmeneniyakh klimata (Naukova dumka, Kiev, 2008) [in Russian].

    Google Scholar 

  3. E. Zorita, V. Kharin, and H. von Storch, “The atmospheric circulation and sea-surface temperature in the North Atlantic area in winter: Their interaction and relevance for Iberian precipitation,” J. Clim. 5 (10), 1097–1108 (1992).

    Article  Google Scholar 

  4. S. K. Gulev, M. Latif, N. Keenlyside, et al., “North Atlantic Ocean control on surface heat flux on multidecadal timescales,” Nature 499 (7459), 464–467 (2013). doi 10.1038/nature12268

    Article  Google Scholar 

  5. G. R. Foltz and M. J. McPhaden, “The role of oceanic heat advection in the evolution of Tropical North and South Atlantic SST anomalies,” J. Clim. 19 (23), 6122–6138 (2006).

    Article  Google Scholar 

  6. T. L. Delworth, “North Atlantic interannual variability in a coupled ocean–atmosphere model,” J. Clim. 9 (10), 2356–2375 (1996).

    Article  Google Scholar 

  7. R. Seager, Y. Kushnir, M. Visbeck, et al., “Causes of Atlantic Ocean climate variability between 1958 and 1998,” J. Clim. 13 (16), 2845–2862 (2000).

    Article  Google Scholar 

  8. M. A. Alexander, J. D. Scott, and C. Deser, “Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model,” J. Geophys. Res. 105 (C7), 16823–16842 (2000). doi 10.1029/ 2000JC900074

    Article  Google Scholar 

  9. I. Jones and H. Leach, “Isopycnic modeling of the North Atlantic heat budget,” J. Geophys. Res. 104 (C1), 1377–1392 (1999). doi 10.1029/1998JC900043

    Article  Google Scholar 

  10. M. W. Buckley, R. M. Ponte, G. Forget, et al., “Lowfrequency SST and upper-ocean heat content variability in the North Atlantic,” J. Clim. 27 (13), 4996–5018 (2014). doi 10.1175/JCLI-D-13-00316.1

    Article  Google Scholar 

  11. E. I. Moraru, S. V. Loginov, and I. I. Ippolitov, “Variability of the ocean-surface and heat-flux temperature in the North Atlantic from 1975 to 2011,” Vestn. Tomsk. Gos. Univ., No. 385, 187–196 (2014).

    Google Scholar 

  12. J. P. Grist, S. A. Josey, R. Marsh, et al., “The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability,” Ocean Dyn. 60 (4), 771–790 (2010). doi 10.1007/s10236-010-0292-4

    Article  Google Scholar 

  13. D. P. Ivanova, J. L. McClean, and E. C. Hunke, “Interaction of ocean temperature advection, surface heat fluxes and sea ice in the marginal ice zone during the North Atlantic oscillation in the 1990s: A modeling study,” J. Geophys. Res. 117, C02031 (2012). doi 10.1029/2011JC007532

    Article  Google Scholar 

  14. N. Verbrugge and G. Reverdin, “Contribution of horizontal advection to the interannual variability of sea surface temperature in the North Atlantic,” J. Phys. Oceanogr. 33 (5), 964–978 (2003).

    Article  Google Scholar 

  15. M. E. Mann and K. A. Emanuel, “Atlantic hurricane trends linked to climate change,” Eos Trans. AGU 87 (24), 233–244 (2006). doi 10.1029/2006EO240001

    Article  Google Scholar 

  16. O. H. Ottera, M. Bentsen, H. Drange, et al., “External forcing as a metronome for Atlantic multidecadal variability,” Nature Geosci. 3 (10), 688–694 (2010). doi 10.1038/ngeo955

    Article  Google Scholar 

  17. B. B. B. Booth, N. J. Dunstone, P. R. Halloran, et al., “Aerosols implicated as a prime driver of twentiethcentury North Atlantic climate variability,” Nature 484 (7393), 228–232 (2012). doi doi 10.1038/nature10946

    Article  Google Scholar 

  18. P. Forster, V. Ramaswamy, P. Artaxo, et al., “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I To the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, (Cambridge University Press, Cambridge, 2007), pp. 129–234.

    Google Scholar 

  19. R. Zhang, T. L. Delworth, R. Sutton, et al., “Have aerosols caused the observed Atlantic multidecadal variability?,” J. Atmos. Sci. 70 (4), 1135–1144 (2013). doi 10.1175/JAS-D-12-0331.1

    Article  Google Scholar 

  20. I. N. James and P. M. James, “Ultra-low-frequency variability in a simple circulation model,” Nature 342 (6245), 53–55 (1989). doi 10.1038/342053a0

    Article  Google Scholar 

  21. S. Power, F. Tseitkin, M. Dix, et al., “Stochastic variability at the air–sea interface on decadal timescales,” Geophys. Res. Lett. 22 (19), 2593–2596 (1995). doi 10.1029/95GL02655

    Article  Google Scholar 

  22. C. Deser and M. L. Blackmon, “Surface climate variations over the North Atlantic Ocean during winter: 1900–1989,” J. Clim. 6 (9), 1743–1753 (1993).

    Article  Google Scholar 

  23. Y. Kushnir, “Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions,” J. Clim. 7 (1), 141–157 (1994).

    Article  Google Scholar 

  24. A. B. Polonskii, “On interdecadal variations in the ocean–atmosphere system,” Meteorol. Gidrol., No. 5, 55–64 (1998).

    Google Scholar 

  25. S. Levitus, J. I. Antonov, and T. P. Boyer, “Interannual variability of temperature at a depth of 125 m in the North Atlantic Ocean,” Science 266 (5182), 96–99 (1994). doi 10.1126/science.266.5182.96

    Article  Google Scholar 

  26. R. L. Molinari, D. A. Mayer, J. F. Festa, et al., “Multiyear variability in the near-surface temperature structure of the midlatitude western North Atlantic Ocean,” J. Geophys. Res. 102 (C2), 3267–3278 (1997). doi 10.1029/96JC03544

    Article  Google Scholar 

  27. D. V. Hansen and H. F. Bezdek, “On the nature of decadal anomalies in North Atlantic sea surface temperature,” J. Geophys. Res. 101 (C4), 8749–8758 (1996). doi 10.1029/95JC03841

    Article  Google Scholar 

  28. R. T. Sutton and M. R. Allen, “Decadal predictability of North Atlantic sea surface temperature and climate,” Nature 388 (6642), 563–567 (1997).

    Article  Google Scholar 

  29. G. R. Halliwell, “Simulation of North Atlantic decadal/multidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies,” J. Phys. Oceanogr. 28 (1), 5–21 (1998).

    Article  Google Scholar 

  30. M. Visbeck, H. Cullen, G. Krahmann, et al., “An ocean model’s response to North Atlantic oscillationlike wind forcing,” Geophys. Res. Lett. 25 (24), 4521–4524 (1998). doi 10.1029/1998GL900162

    Article  Google Scholar 

  31. S. Hakkinen, “Decadal air–sea interaction in the North Atlantic based on observations and modeling results,” J. Clim. 13 (6), 1195–1219 (2000).

    Article  Google Scholar 

  32. C. Eden and J. Willebrand, “Mechanism of interannual to decadal variability of the North Atlantic circulation,” J. Clim. 14 (10), 2266–2280 (2001).

    Article  Google Scholar 

  33. A. Grotzner, M. Latif, and T. P. Barnett, “A decadal climate cycle in the North Atlantic ocean as simulated by the ECHO coupled GCM,” J. Clim. 11 (5), 831–847 (1998).

    Article  Google Scholar 

  34. H. Stommel, The Gulfstream: A Physical and Dynamical Description (University of California: Berkeley and Los Angeles, 1958; Inostrannaya literatura, Moscow, 1963).

    Google Scholar 

  35. A. G. Kolesnikov, I. L. Isaev, L. S. Isaeva, et al., “On the macrostructure of the ocean-surface temperature field,” Tr. Morsk. Geofiz. Inst. Akad. Nauk Ukr. SSR 35, 3–12 (1966).

    Google Scholar 

  36. V. G. Kort, “On the large-scale ocean–atmosphere interaction,” Okeanologiya 10 (2), 222–240 (1970).

    Google Scholar 

  37. A. B. Polonskii and A. S. Kuz’min, “On the variability of decadal oscillations in hydrometeorological variables in the North Atlantic,” Meteorol. Gidrol., No. 9, 73–88 (2000).

    Google Scholar 

  38. U. Luksch, “Simulation of North Atlantic low-frequency SST variability,” J. Clim. 9 (9), 2083–2092 (1996).

    Article  Google Scholar 

  39. K. A. Kelly and B. Qiu, “Heat flux estimates for the western North Atlantic. Pt. II: The upper-ocean heat balance,” J. Phys. Oceanogr. 25 (10), 2361–2373 (1995).

    Article  Google Scholar 

  40. S. Dong and K. A. Kelly, “Heat budget in the Gulf Stream region: The importance of heat storage and advection,” J. Phys. Oceanogr. 34 (5), 1214–1231 (2004).

    Article  Google Scholar 

  41. A. J. Miller, D. R. Cayan, T. P. Barnett, et al., “Interdecadal variability of the Pacific Ocean model response to observed heat flux and wind stress anomalies,” Clim. Dyn. 9 (6), 287–302 (1994). doi 10.1007/BF00204744

    Article  Google Scholar 

  42. E. Johns, D. R. Watts, and H. T. Rossby, “A test of geostrophy in the Gulf Stream,” J. Geophys. Res. 94 (C3), 3211–3222 (1989). doi 10.1029/JC094iC03p03211

    Article  Google Scholar 

  43. M. A. Balmaseda, A. Vidard, and D. L. T. Anderson, “The ECMWF ocean analysis system: ORA-S3,” Mon. Weather Rev. 136 (8), 3018–3034 (2008). doi 10.1175/ 2008MWR2433.1

    Article  Google Scholar 

  44. S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 reanalysis,” Q. J. R. Meteorol. Soc. 131B (612), 2961–3012 (2005). doi 10.1256/qj.04.176

    Article  Google Scholar 

  45. J. Kröger, W. A. Müller, and J. S. von Storch, “Impact of different ocean reanalyses on decadal climate prediction,” Clim. Dyn. 39 (3–4), 795–810 (2012).

    Article  Google Scholar 

  46. S. B. Krasheninnikova and P. A. Sukhonos, “Thermal characteristics of the subtropical Atlantics according to WODB and ORA-S3 data,” Sist. Kontrolya Okruzh. Sredy, No. 20, 123–127 (2014).

    Google Scholar 

  47. Simulation and Prediction of Upper Oceanic Layers, Ed. by E. B. Kraus (Gidrometeoizdat, Leningrad, 1979), pp. 175–208 [in Russian].

  48. Jenkins, G. and Watts, D., Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1966; Mir, Moscow, 1971).

    Google Scholar 

  49. S. Hastenrath, “Hemispheric asymmetry of oceanic heat budget in the equatorial Atlantic and eastern Pacific,” Tellus 29 (6), 523–529 (1977).

    Article  Google Scholar 

  50. G. F. Dzhiganshin and A. B. Polonskii, “Low-frequency variability of the Gulfstream flow: Description and mechanisms,” Morsk. Gidrofiz. Zh., No. 3, 30–49 (2009).

    Google Scholar 

  51. R. G. Curry and M. S. McCartney, “Ocean gyre circulation changes associated with the North Atlantic Oscillation,” J. Phys. Oceanogr. 31 (12), 3374–3400 (2001).

    Article  Google Scholar 

  52. H. Machel, A. Kapala, and H. Flohn, “Behavior of the centres of action above Atlantic Since 1881. Part 1: Characteristics of seasonal and interannual variability,” Int. J. Climatology 18 (7), 1–22 (1998).

    Article  Google Scholar 

  53. G. F. Dzhiganshin and A. B. Polonskii, “North Atlantic Oscillation and variability of characteristics of the upper oceanic layer,” Izv., Atmos. Ocean. Phys. 39 (4), 497–505 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Polonsky.

Additional information

Original Russian Text © A.B. Polonsky, P.A. Sukhonos, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 6, pp. 729–739.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polonsky, A.B., Sukhonos, P.A. Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic. Izv. Atmos. Ocean. Phys. 52, 649–658 (2016). https://doi.org/10.1134/S0001433816060141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816060141

Keywords

Navigation