Skip to main content
Log in

On the role of integral feedbacks in stochastic climate models

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Using a stochastic approach with zero-dimensional energy-balance models, we consider the problem of periodic climate changes and the influence of integral feedbacks on climate oscillations. Based on the resulting linear integral–differential stochastic equation, we calculate the spectrum of fluctuations of average surface-air temperature and determine its statistical properties. We analyze the influence of proper cycles of inertial units and “slow” nonstationarity on the fluctuation spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Monin and Yu. A. Shishkov, “Climate as a problem of physics,” Phys.-Usp. 43 (4), 381–406 (2000).

    Article  Google Scholar 

  2. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Modeling climate and its changes: Current problems,” Herald Russ. Acad. Sci. 82 (2), 111–119 (2012).

    Article  Google Scholar 

  3. Climate Change: Observed Impacts on Planet Earth, Ed. by T. M. Letcher (Elsevier, Oxford, 2009).

  4. B. A. Kagan, V. A. Ryabchenko, and A. S. Safrai, Response of the Ocean–Atmosphere System to External Forcing (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  5. A. S. Monin and D. M. Sonechkin, Climate Oscillations from Observational Data. The Triple Solar and Other Cycles (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  6. A. V. Kislov, Climate in the Past, Present, and Future (Nauka/Interperiodika, Moscow, 2001) [in Russian].

    Google Scholar 

  7. K. E. Trenberth, Climate System Modeling (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  8. K. Hasselmann, “Stochastic climate model. Part 1: Theory,” Tellus 28 (6), 473–485 (1976).

    Article  Google Scholar 

  9. P. F. Demchenko and A. V. Kislov, Stochastic Dynamics of Natural Objects. Brownian Motion and Geophysical Applications (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  10. G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Phenomena: Methods, Tools, and Results (URSS, Moscow, 2013) [in Russian].

    Google Scholar 

  11. Stochastic Climate Models (Progress in Probability), Ed. by P. S. Imkeller and J.-S. von Storch (Birkhäuser, Berlin, 2001).

  12. D. Rapp, Ice Ages and Interglacials. Measurement, Interpretation and Models (Springer, Chichester, 2009).

    Book  Google Scholar 

  13. V. Ya. Sergin and S. Ya. Sergin, The System Analysis of the Problem of Large Variations of Climate and the Earth’s Ice Ages (Gidrometeoizdat, Leningrad, 1978) [in Russian].

    Google Scholar 

  14. A. Ganopolski and S. Rahmstorf, “Abrupt glacial climate change due to stochastic resonance,” Phys. Rev. Lett. 88 (3), 038501 (2002).

    Article  Google Scholar 

  15. V. Volterra, Theory of Functionals and of Integral and Integro–Differential Equations (Dover, New York, 1959;Nauka, Moscow, 1982).

    Google Scholar 

  16. R. E. Dickinson, “Convergence rate and stability of ocean–atmosphere coupling scheme with a zero dimensional climate model,” J. Atmos. Sci. 38 (10), 2112–2120 (1981).

    Article  Google Scholar 

  17. R. E. Dickinson, “Land–surface processes and climate-surface albedos and energy balance,” Adv. Geophys. 25, 305–353 (1983).

    Article  Google Scholar 

  18. U. Deker and F. Haake, “Fluctuation–Dissipation theorems for classical processes,” Phys. Rev. A 11, 2043–2056 (1975).

    Article  Google Scholar 

  19. C. E. Leith, “Climate response and fluctuation dissipation,” J. Atmos. Sci. 32, 2022–2026 (1975).

    Article  Google Scholar 

  20. A. Gritsun and G. Branstator, “Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem,” J. Atmos. Sci. 64, 2558–2575 (2007).

    Article  Google Scholar 

  21. A. J. Majda, B. Gershgorin, and Y. Yuan, “Low-frequency climate response and fluctuation–dissipation theorems: Theory and practice,” J. Atmos. Sci. 67, 1186–1201 (2010).

    Article  Google Scholar 

  22. D. Archer, The Global Carbon Cycle (Princeton University Press, Princeton, 2010).

    Google Scholar 

  23. M. Ya. Verbitskii and D. V. Chalikov, Modeling the Glacier–Ocean–Atmosphere System (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Petrov.

Additional information

Original Russian Text © D.A. Petrov, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 1, pp. 15–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, D.A. On the role of integral feedbacks in stochastic climate models. Izv. Atmos. Ocean. Phys. 53, 12–18 (2017). https://doi.org/10.1134/S0001433816060128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816060128

Keywords

Navigation