Skip to main content
Log in

Modeling of ocean dynamics with large variations in sea level

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The formulation and the algorithm of solving an ocean model for the prediction and assimilation of the observed data which makes it possible to reconstruct the circulation in the deep-water parts of the sea and at a shallow water shelf, as well as to describe the large time–space variability in the surface level, are considered. The model uses a vertical hybrid σ–z coordinate system: the several upper tens of meters of the ocean are described in the σ-coordinate system and the rest of the water column is described in the z coordinates. Such hybridization extends the possibilities of models for reconstructing thermo-hydrodynamic processes in different sea basins and the World Ocean. The differential formulation of the model in the σ–z coordinate system is presented; the simplified records of several operators that are allowable in the case of a small thickness of the ocean σ-layer are described. The construction of a computational grid, approximation of the bottom topography on it, and discretization of equations and boundary conditions of the models are considered; an approach to describing the bottom friction at shallow waters is offered. The results of the comparative experiments in the z and σ–z coordinate models are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Willebrand, B. Barnier, C. Böning, et al., “Circulation characteristics in three eddy-permitting models of the North Atlantic,” Prog. Oceanogr. 48, 123–161 (2001).

    Article  Google Scholar 

  2. E. P. Chassignet, H. Arango, D. Dietrich, et al., “DAMEE-NAB: The base experiments,” Dyn. Atmos. Oceans 32, 155–184 (2000).

    Article  Google Scholar 

  3. S. G. Demyshev, “A numerical model of online forecasting Black Sea currents,” Izv., Atmos. Ocean. Phys. 48 (1), 120–132 (2012).

    Article  Google Scholar 

  4. S. Griffies, Elements of the Modular Ocean Model (MOM) (2012 release), GDFL Ocean Group technical report No. 7 (2012).

    Google Scholar 

  5. R. D. Smith, J. K. Dukowicz, and R. C. Malone, “Parallel ocean general circulation modeling,” Phys. D (Amsterdam) 60, 38–61 (1992).

    Article  Google Scholar 

  6. J. Marshall, A. Adcroft, C. Hill, et al., “A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers,” J. Geophys. Res. 102 (C3), 5753–5766 (1997).

    Article  Google Scholar 

  7. S. J. Marsland, H. Haak, J. H. Jungclaus, et al., “The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates,” Ocean Modell. 5, 91–127 (2003).

    Article  Google Scholar 

  8. V. B. Zalesny, Modeling Large-Scale Motions in the World Ocean (Department of Numerical Mathematics, USSR Acad. Sci., Moscow, 1984) [in Russian].

    Google Scholar 

  9. N. A. Diansky, Modeling the Ocean Circulation and Study of Its Response to Short- and Long-Period Atmospheric Influences (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  10. A. V. Gusev and N. A. Diansky, “Numerical simulation of the world ocean circulation and its climatic variability for 1948–2007 using the INMOM,” Izv., Atmos. Ocean. Phys. 50 (1), 1–12 (2014).

    Article  Google Scholar 

  11. A. Blumberg and G. L. Mellor, “A description of a threedimensional coastal ocean circulation model,” in Three- Dimensional Coastal Ocean Models, Ed. by N. S. Heaps (American Geophysical Union, Washington, D.C., 1987). doi 10.1029/CO004p0001

    Google Scholar 

  12. G. L. Mellor, T. Ezer, and L.-Y. Oey, “The pressure gradient conundrum of sigma coordinate ocean models,” J. Atmos. Ocean. Technol. 11 (4), 1126–1134 (1994).

    Article  Google Scholar 

  13. G. L. Mellor, L.-Y. Oey, and T. Ezer, “Sigma coordinate pressure gradient errors and the seamount problem,” J. Atmos. Ocean. Technol. 15 (5), 1122–1131 (1998).

    Article  Google Scholar 

  14. E. P. Chassignet, H. E. Hurlburt, O. M. Smedstad, et al., “Generalized vertical coordinates for eddy-resolving global and coastal ocean forecasts,” Oceanography 19 (1), 118–129 (2006).

    Article  Google Scholar 

  15. G. Madec, F. Lott, P. Delecluse, and M. Crépon, “Large-scale preconditioning of deep-water formation in the northwestern Mediterranean sea,” J. Phys. Oceanogr. 26 (8), 1393–1408 (1996).

    Article  Google Scholar 

  16. C. N. Barron, A. B. Kara, P. J. Martin, et al., “Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM),” Ocean Modell. 11 (3), 347–375 (2006).

    Article  Google Scholar 

  17. H. Hasumi, Documentation for CCSR Ocean Component Model (COCO), version 4.0, 2007. http://ccsraoriu-tokyoacjp/~hasumi/COCO/indexhtml.

    Google Scholar 

  18. R. A. Ibrayev, “Model of enclosed and semi-enclosed sea hydrodynamics,” Russ. J. Numer. Anal. Math. Modell. 16 (4), 291–304 (2001).

    Article  Google Scholar 

  19. R. A. Ibraev, Mathematical Modeling of Thermodynamic Processes in the Caspian Sea (GEOS, Moscow, 2008) [in Russian].

    Google Scholar 

  20. R. A. Ibrayev, E. Ozsoy, C. Schrum, and H. I. Sur, “Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air–sea interaction,” Ocean Sci. 6, 311–329 (2010).

    Article  Google Scholar 

  21. V. V. Kalmykov and R. A. Ibrayev, “The overlapping algorithm for solving shallow water equations on massively- parallel architectures with distributed memory,” Vestnik UGATU 17 (5), 252–259 (2013).

    Google Scholar 

  22. A. S. Sarkisyan, R. A. Ibrayev, and N. G. Iakovlev, “High-resolution and four-dimensional analysis as a prospect for ocean modeling,” Russ. J. Numer. Anal. Math. Modell. 25 (5), 477–496 (2010).

    Article  Google Scholar 

  23. P. D. Killworth, D. Stainforth, D. J. Webb, and S. Paterson, “The development of a free surface Bryan–Cox–Semtner model,” J. Phys. Oceanogr. 21, 1333–1348 (1991).

    Article  Google Scholar 

  24. G. L. Mellor and A. F. Blumberg, “Modeling vertical and horizontal diffusivities with the sigma coordinate system,” Mon. Weather Rev. 113, 1380–1383 (1985).

    Article  Google Scholar 

  25. A. Sarkisyan and J. Sündermann, Modelling Ocean Climate Variability (Springer, Berlin, 2009).

    Book  Google Scholar 

  26. A. Arakawa, Design of the UCLA general circulation model, Tech. Rep. No. 7, Department of Meteorology, University of California, Los-Angeles (1972).

    Google Scholar 

  27. A. Arakawa and V. R. Lamb, “Computational design of the basic dynamical processes of the UCLA general circulation model,” in Computational Physics (Academic Press, New York, 1977), Vol. 17, pp. 173–265.

    Google Scholar 

  28. M. L. Batteen and Y.-J. Han, “On the computational noise of finite-difference schemes used in ocean models,” Tellus 33 (4), 387–396 (1981).

    Article  Google Scholar 

  29. S. M. Griffies, Fundamentals of Ocean Climate Models (Princeton University Press, Princeton, 2004).

    Google Scholar 

  30. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., “The Lomonosov supercomputer practice,” Otkrytye Sist., No. 7, 36–39 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Ibrayev.

Additional information

Original Russian Text © R.A. Ibrayev, G.S. Dyakonov, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 4, pp. 514–526.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrayev, R.A., Dyakonov, G.S. Modeling of ocean dynamics with large variations in sea level. Izv. Atmos. Ocean. Phys. 52, 455–466 (2016). https://doi.org/10.1134/S000143381604006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381604006X

Keywords

Navigation