Skip to main content
Log in

Analyzing intraannual variations in the energy characteristics of circulation in the Black Sea

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The energy characteristics of circulation in the Black Sea have been numerically analyzed for 2006. The annually and seasonally averaged integral components of the budget of both kinetic and potential energies are considered. It is shown that, over the period under study, wind forcing, buoyancy force, and friction are the main factors determining variations in the mechanical energy of the Black Sea. During the cold months, wind forcing maximally contributes to the kinetic energy. In spring, the contribution made by buoyancy force is dominant. The values of buoyancy force are maximum within the upper quasi-homogeneous layer during the warm season and on horizons, where the waters of the cold intermediate layer are concentrated, during the fall–winter season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Sarkisyan and T. Z. Dzhioev, “Diagnostic model and calculation of Black Sea currents,” Meteorol. Gidrol., No. 3, 70–76 (1974).

    Google Scholar 

  2. G. R. Gamsakhurdiya and A. S. Sarkisyan, “Diagnostic calculations of currents at 11 levels for the Black Sea,” Okeanologiya (Moscow) 15 (2), 239–244 (1975).

    Google Scholar 

  3. D. I. Trukhchev and A. S. Sarkisyan, “Hydrodynamic diagnostics of climatic fields of temperature, salinity, currents in the Black Sea,” Izv. Akad. Nauk, Fiz. Atm. Okeana 31 (6), 809–819 (1995).

    Google Scholar 

  4. R. A. Ibraev and D. I. Trukhchev, “A diagnosis of the climatic seasonal circulation and variability of the cold intermediate layer in the Black Sea,” Izv., Atmos. Ocean. Phys. 32 (5), 604–619 (1996).

    Google Scholar 

  5. A. F. Blunberg and G. L. Mellor, “A description of tree dimensional coastal ocean circulation model,” Coastal Estuarine Sci. 4, 1–16 (1987).

    Article  Google Scholar 

  6. S. M. Griffies, M. J. Harrison, R. C. Pacanowski, et al., “A technical guide to MOM4,” GFDL Ocean Group Technical Report No. 5, 2008.

    Google Scholar 

  7. N. A. Diansky, Modeling the Ocean Circulation and Study of Its Response to Short- and Long-Period Atmospheric Influences (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  8. R. A. Ibraev, K. V. Ushakov, and R. N. Khabeev, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).

    Article  Google Scholar 

  9. C. Enriquez, G. Shapiro, A. Souza, and A. Zatsepin, “Hydrodynamic modelling of mesoscale eddies in the Black Sea,” Ocean Dyn. 55, 476–489 (2005).

    Article  Google Scholar 

  10. V. B. Zalesny, A. V. Gusev, and S. N. Moshonkin, “Numerical model of the hydrodynamics of the Black Sea and the Sea of Azov with variational initialization of temperature and salinity,” Izv., Atmos. Ocean. Phys. 49 (6), 642–658 (2013).

    Article  Google Scholar 

  11. S. Grayek, E. Stanev, and R. Kandilarov, “On the response of Black Sea level to external forcing: Altimeter data and numerical modelling,” Ocean Dyn. 60 (1), 123–140 (2010).

    Article  Google Scholar 

  12. K. A. Korotenko, J. M. Bowman, and D. E. Dietrich, “High-resolution numerical model for predicting the transport and dispersal of oil spilled in the Black Sea,” Terr. Atmos. Ocean. Sci. 21 (1), 123–136 (2010).

    Article  Google Scholar 

  13. A. I. Kubryakov, G. K. Korotaev, V. L. Dorofeev, et al., “Black Sea coastal forecasting system,” Ocean Sci. 8, 183–196 (2012).

    Article  Google Scholar 

  14. V. M. Kamenkovich and A. S. Monin, Oceanology. Ocean Physics, Vol. 2: Ocean Hydrodynamics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  15. A. Robinson, D. E. Harrison, Y. Mintz, and A. J. Semtner, “Eddies and the general circulation of an idealized oceanic gyre: A wind and thermally driven primitive equation numerical experiment,” J. Phys. Oceanogr. 7, 182–207 (1977).

    Article  Google Scholar 

  16. W. R. Holland, “Energetics of baroclinic oceans,” in Numerical Models of Ocean Circulation (Nat. Acad. Sci., Washington, D.C., 1975), pp. 168–179.

    Google Scholar 

  17. M. G. Bulushev and A. S. Sarkisyan, “Energetics at the initial stage of the adjustment of equatorial currents,” Izv., Atmos. Ocean. Phys. 32 (5), 552–563 (1996).

    Google Scholar 

  18. I. Grooms, L. Nadeau, and K. Smith, “Mesoscale eddy energy locality in an idealized ocean model,” J. Phys. Oceanogr. 43, 1911–1923 (2013).

    Article  Google Scholar 

  19. X. Shang, C. Xu, G. Chen, et al., “Review on mechanical energy of ocean mesoscale eddies and associated energy sources and sinks,” J. Trop. Oceanogr. 32 (2), 24–36 (2013).

    Google Scholar 

  20. A. M. Suvorov and I. G. Ostrovskaya, “Variability of available potential energy in the Black Sea,” in Environmental Control Systems (EKOSI-Gidrofizika, Sevastopol, 2002), pp. 185–190 [in Russian].

    Google Scholar 

  21. M. Menna and P.-M. Poulain, “Geostrophic currents and kinetic energies in the Black Sea estimated from merged drifter and satellite altimetry data,” Ocean Sci. 10, 155–165 (2014).

    Article  Google Scholar 

  22. S. G. Demyshev, “Energetics of the climatic circulation of the Black Sea. Part 1: Discrete equations of the rate of change in kinetic and potential energies,” Meteorol. Gidrol., No. 9, 65–80 (2004).

    Google Scholar 

  23. S. G. Demyshev, “Energetics of the climatic circulation of the Black Sea. Part 2: Numerical analysis of climate energetics,” Meteorol. Gidrol., No. 10, 74–86 (2004).

    Google Scholar 

  24. S. G. Demyshev and O. A. Dymova, “Numerical analysis of the mesoscale features of circulation in the Black Sea coastal zone,” Izv., Atmos. Ocean. Phys. 49 (6), 603–610 (2013).

    Article  Google Scholar 

  25. “The ALADIN project: Mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research,” WMO Bull. 46 (4), 317–324 (1997).

  26. Hydrometeorology and Hydrochemistry of Seas in the USSR, Vol. 4: The Black Sea, Issue 1: Hydrometeorological Conditions (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].

  27. G. K. Korotaev and V. N. Eremeev, Introduction to Operational Oceanography of the Black Sea (EKOSIGidrofizika, Sevastopol, 2006) [in Russian].

    Google Scholar 

  28. G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Rev. Geophys.: Space Phys. 20 (4), 851–875 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Dymova.

Additional information

Original Russian Text © S.G. Demyshev, O.A. Dymova, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 4, pp. 439–447.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyshev, S.G., Dymova, O.A. Analyzing intraannual variations in the energy characteristics of circulation in the Black Sea. Izv. Atmos. Ocean. Phys. 52, 386–393 (2016). https://doi.org/10.1134/S0001433816040046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816040046

Keywords

Navigation